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Introduction 

Mammalian reproduction requires numerous precisely orchestrated events, for 

successful fertilization, and initiation of embryonic development. These processes can be 

readily modulated by the energy state of the body.  

Since reproduction is a highly energy consuming process, therefore, it is vital for the 

body to be prepared for optimal circumstances when energy can be consumed for reproduction 

without any high risk.  

Availability of food, thus the actual nutritional state can cause fluctuations in the level 

of metabolic hormones (such as leptin, IGF-1, ghrelin, etc.) having major effects upon 

reproduction [1]. Under certain environmental or physiological conditions, such as in anorexia 

nervosa, the suppression of reproductive functions is adaptive to survival [2]. Importance of 

examining the role of metabolic molecules in the process of reproduction is further emphasized 

by the extensive studies carried out about the high risk of infertility in case of metabolic 

problems.  

Therefore, it is indispensable to reveal how various metabolic hormones act on 

hypophysiotropic gonadotropin releasing hormone (GnRH) neurons, the master cells in the 

central regulation of the reproductive process. In this Thesis, I will present two of them, the 

secretin, and the insulin-like growth factor 1 (IGF-1).   

Secretin is an anorexigenic hormone [3], and it can serve as a signal molecule reporting 

level of the energy homeostasis. It was the first hormone discovered in 1902 [4]. It is released 

from the S-cells in the intestine when pylorus of the stomach opens to transfer food into the 

gut. In the periphery, secretin serves, as a local signal to pancreas for neutralizing the acidity 

of the chyme by secretion of bicarbonates [4]. It can cross the intact blood-brain barrier (BBB) 

[5, 6] and serve as a peripheral metabolic signal to neurons in numerous brain regions.  

Only limited information has been available about the exact role of secretin in the 

regulation of reproduction so far [7]. There are a few reports indicating that it can be regarded 

as a putative regulator of the reproductive axis. In an early study, intracerebral (IC) injection 

of secretin into the hypothalamic preoptic region of rats resulted in a 10-fold elevation of 

luteinizing hormone (LH) concentration in the plasma [8], suggesting that GnRH neurons 

might be targeted by secretin. Therefore, it is highly conceivable that secretin, as one of the 

signal molecules of the homeostasis, also modulates function of GnRH neurons.  

However, the exact cellular mechanism of the effect of secretin in the modulation of 

HPG axis has not been revealed, yet. In the present study, therefore, we carried out whole cell 

patch clamp recordings on GnRH-GFP neurons of male mice to elucidate the effect of secretin 

on firing and PSCs, and to uncover the second messenger cascade events occurring 

downstream to the secretin receptor in these neurons.  
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Insulin-like growth factor 1 (IGF-1) is one of the metabolic growth hormone molecules 

secreted primarily from the liver in adults [9, 10].  

The concentration of IGF-1 in the serum decreases during fasting both in humans and 

rodents [11, 12] . The level of IGF-1 bindig protein-3 that primarily binds IGF-1, also elevates 

during fasting, which further reduces the free IGF-1 concentration [13].  

During puberty, the IGF-1 concentration peaks in the plasma suggesting that the 

hormone shapes this process [14]. Indeed, high IGF-1 level accelerates the onset of puberty 

both in males and females [15]. In females, low IGF-1 concentration results in impaired estrous 

cycle [16]. Furthermore, its concentration in the serum is gonadal cycle dependent showing 

periodic oscillation during the estrus cycle [17, 18]. Since hypothalamic IGF-1 receptor 

(IgF1R) is the most abundant in proestrus, and E2 synergistically and mutually stimulates IGF-

1 activity [15], these data indicate an essential role of IGF-1 in the central regulation of 

reproduction.  

In this role it is of particular significance that IGF-1 can directly act on GnRH neurons. 

IGF-1R is expressed in GnRH neurons [19] and IGF-1 stimulates GnRH production and release 

[16]. IGF-1 of peripheral origin contributes to the initiation of female puberty by stimulating 

GnRH release from the hypothalamus, an effect that appears to be amplified by the increased 

presence of IGF-1Rs in the median eminence (ME) during first proestrus [20]. Mutation in 

IGF-1 in human patients [21] and GnRH specific deletion of IGF-1R in mice [22] resulted in 

a significantly delayed puberty providing further evidence for the important role of IGF-1 in 

puberty. More data suggested a long-term direct effect of IGF-1 on the GnRH expressing GT1 

neuronal cell lines [23, 24]. However, the elements of the signaling pathway have not been 

fully understood, yet. 

Therefore, using in vitro electrophysiology, we investigated the electric response 

of GnRH neurons to IGF-1 administration and the molecular pathways acting downstream to 

IgF-1 receptor. According to our earlier studies, various hormones trigger retrograde signaling 

pathways in GnRH neurons [25-27] suggesting strongly that this machinery might also be 

involved in the signal transduction downstream to the IGF-1R. In addition, GABA with 

excitatory role is the main neurotransmitter to GnRH neurons and the retrogradely released 

endocannabinoid and/or NO target the GABAergic presynaptic axon terminals [26], providing 

strong rationale to examine the role of retrograde signaling to GABAergic afferents in the 

action of IGF-1. 
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Specific aims  

 The purpose of my doctoral thesis was to gain more accurate information about 

signaling pathways related to metabolic signals in GnRH neurons using electrophysiological 

methods. In the first project, described in this dissertation, I investigated the effect of secretin 

on GnRH neurons, via whole cell patch clamp experiments. I was in search of the answers for 

the following questions: 

1. Can secretin modulate the electrophysiological properties of GnRH neurons? 

2. Is this modulatory effect direct on GnRH neurons via secretin receptor? 

3. Are retrograde signaling pathways involved in this mechanism? 

4. What signaling pathway is activated in the modulatory effect of secretin? 

 

  In the second project, I present my results about the regulatory role of the insulin-like 

growth hormone-1.  

 

I attempted to answer these questions: 

1. Can IGF-1 modulate the electrical parameters of GnRH neurons? 

2. Is this modulatory effect direct in GnRH neurons via IGF-1 receptor? 

3. Which molecular pathways act downstream to the IGF-1 receptor in GnRH neurons?   

4. Are retrograde signaling pathways involved in this machinery? 

 

Experimental procedures 

Adult, pubertal (50 days) and prepubertal (23-29 days) male GnRH-green fluorescent 

protein (GnRH-GFP) transgenic mice bred on a C57Bl/6J genetic background were used for 

electrophysiological experiments [28]. 

Brain slice preparation and whole cell patch clamp experiments  

 
Brain slice preparation was carried out based on our earlier experiments [26]. Two 

hundred fifty   μm-thick coronal slices were prepared from the medial preoptic area (POA). 

During whole-cell patch clamp experiments spontaneous and miniature postsynaptic 

currents, action potentials and membrane potentials were measured either in voltage- or 

current clamp mode.  

Whole-cell patch-clamp measurements started with a control recording (5 min), then 

secretin or IGF-1 was pipetted into the aCSF-filled measurement chamber containing the brain 

slice in a single bolus and the recording continued for further 10 minutes. Pretreatment with 
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extracellularly used antagonists started 10 minutes before adding the agonist. The antagonists 

were continuously present in the aCSF during the electrophysiological recording. 

Intracellularly applied drugs were added to the intracellular pipette solution and after achieving 

whole-cell patch clamp configuration, we waited 15 min to reach equilibrium in the 

intracellular milieu before starting recording. Each neuron served as its own control when drug 

effects were evaluated. 

 

 

Reagents and chemicals  

 

Extracellularly used drugs 

Name Purpose Concentration  Producer references 

Secretin 
Secretin receptor 

agonist 
30 nM- 1 µM Tocris, UK 

Dose-

response 

curve 

Secretin 

antagonist 

Secretin receptor 

antagonist 
3 µM 

Distribio-Genecust-

Labbx, Luxembourg 
 [29] 

picrotoxin GABA-A-R blocker 100 µM Sigma, US  [30, 31] 

IGF-1 IGF-1 receptor agonist 1-66 nM Sigma  [32] 

JB-1 
IGF-1 receptor 

antagonist 
800 nM Bachem, DE  

AM251 
CB1 endocannabinoid 

receptor inverse agonist 
1 µM Sigma, US  [26, 27] 

TTX 

Tetrodotoxin, voltage-

gated sodium channel 

blocker 

660 nM Tocris, UK 
[26, 27] 

 

Intracellularly used drugs 

GDP-β-S 

G-protein inhibitor 

(membrane 

impermeable) 

2 mM  Sigma, US  [33-35] 

NPLA 
neuronal nitric oxide 

synthase inhibitor 
1 µM Tocris, UK  [36-38] 

KT5720 
protein kinase-A 

inhibitor 
2 µM Sigma, US  [39, 40] 

AMG9810 

transient receptor 

potential vanilloid 1 

antagonist 

10 µM Sigma, US  [41-43] 

LY294002 
phosphoinositol-3-

kinase inhibitor 
50 µM Sigma, US  [44] 
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Results I 

 

Thesis 1.: Secretin modulates the electrophysiological properties of GnRH neurons  

At 100 nM concentration secretin significantly increased the firing rate and the 

frequency of spontaneous and miniature postsynaptic currents of GnRH neurons in adult male 

mice. Secretin also depolarized the membrane potential of GnRH neurons.  Secretin acted in a 

dose dependent manner. These results demonstrate that secretin has an excitatory effect on 

GnRH neurons. 

 

Thesis 2.: The modulatory effect is direct through secretin receptor 

Electrophysiological experiments demonstrated that secretin receptor is mandatory for 

the observed effect of secretin on GnRH neurons, because in the presence of the specific 

secretin receptor antagonist secretin could not increase the frequency of miniature postsynaptic 

currents.  

Intracellular blockade of the G-protein coupled receptors by GDP-β-S also prevented 

the frequency-elevating effect of secretin. Since secretin receptor is a G-protein coupled 

receptor, this experiment proved, that secretin receptor is active in GnRH neurons. 

 

Thesis 3: Secretin activates the retrograde nitric oxide signaling pathway 

 Electrophysiological results revealed the involvement of nitric oxide (NO) retrograde 

signaling in the effect of secretin, In the presence of nitric oxide synthase blocker (NPLA), 

secretin was unable to elevate the frequency of the miniature postsynaptic currents.  

 

Thesis 4. The retrograde nitric oxide pathway can be regulated by phosphokinase A in 

GnRH neurons. 

 We showed that the presence of selective PKA blocker KT5720 in the intracellular 

solution abolished the frequency-increasing effect of secretin on mPSCs of GnRH neurons.  
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Schematic illustration of secretin receptor signaling in GnRH neurons. Secretin activates 

cAMP/PKA/nNOS pathway and generates NO that binds to its presynaptic receptor, sGC, 

located in the GABAergic terminals. This signaling process increases the release of GABA, 

therefore, facilitates the synaptic inputs to GnRH neurons via GABAA-receptor. AC, adenylate 

cyclase; cAMP, cyclic adenosine monophosphate; Gαs, Gβ, Gγ, G-protein subunits; GABAA-

R, GABAA-receptor; PTX, picrotoxin, selective GABAA-receptor blocker; PKA, protein 

kinase A; KT5720, protein kinase A inhibitor; nNOS, neuronal nitric oxide synthase; NPLA, 

nNOS inhibitor; GDP-β-S, G-protein inhibitor; sGC, soluble guanylyl cyclase, NO receptor. 

Red lines depict inhibitory actions, green arrows refer to the signal transduction pathway 

resulting in excitatory action of NO. 
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Results II. 

 

Thesis 5: IGF-1 modulates the GnRH neurons of prepubertal and pubertal male mice 

 IGF-1 significantly elevated the frequency of spontaneous postsynaptic currents, action 

potential and miniature postsynaptic currents of GnRH neurons in approximately half of the 

measured GnRH neurons in prepubertal male mice. This stimulatory effect was dose dependent. 

 We also demonstrated that IGF-1 increases the frequency of mPSCs in half of the GnRH 

neurons of pubertal male mice too.  

 

Thesis 6: IGF-1 modulates the GnRH neurons directly via IGF-1 receptor 

 The frequency-increasing effect of IGF-1 on the mPSCs was prevented by the specific 

IGF-1 receptor antagonist (JB1). This suggests the functional role of the IGF-1R expressed in 

GnRH neurons 

 

Thesis 7: Retrograde endocannabinoid signaling pathway is involved in the effect of IGF-

1. 

 The relationship between IGF-1 and endocannabinoid systems was confirmed when IGF-

1 was not effective during the blockade of cannabinoid receptor type 1 (CB1). The role of 

transient receptor potential cation channel subfamily V member 1 (TRPV1) in the signaling 

mechanism was also demonstrated in our experiments. Intracellular blockade of TRPV1 

eliminated the effect of IGF-1 on the mPSCs.  

 Blockade of CB1 and the intracellular blockade of TRPV1 supported the view that 2-

arachidonoylglycerol is synthetized in GnRH neurons and involved in the effect of signals 

modulating GnRH neuron activity. 

 

Thesis 8: The activation of the retrograde endocannabinoid pathway includes 

phosphoinositol-3-kinase (PI3K). 

PI3K has a major role in the activation of the retrograde endocannabinoid pathway by 

IGF-1. The intracellular specific blockade of PI3K abolished the frequency elevation triggered 

by IGF-1. 
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Schematic illustration of the IGF-1 receptor signaling in GnRH neurons. IGF-1 activates 

PI3K which leads to the phosphorylation of PIP2 to PIP3. In cells, TRPV1 is inactivated by its 

binding to PIP2, and after the activation of PI3K, TRPV1 receptor will be released from the PIP2 

blockade. Activation of TRPV1 leads to the blockade of DGL and decreases the postsynaptic 

production and release of 2-AG resulting in the suppression of inhibition of the presynaptic 

excitatory GABA release.  

Abbreviations: IGF-1R: Insulin-like growth factor 1 receptor; JB1: IGF-1R antagonist;  PI3K: 

Phosphoinositide-3 kinase; LY294002: PI3K blocker; PIP2: Phosphatidylinositol 4,5-

bisphosphate; PIP3: phosphatidylinositol 3,4,5 trisphosphate; DAG: Diacylglycerol; DGL: 

Diacylglycerol lipase; TRPV1: transient receptor potential cation channel subfamily V member 

1; AMG9810: TRPV1 antagonist; 2-AG: 2-Arachidonoylglycerol; CB1: Cannabinoid receptor 

type 1; AM251: CB1 receptor antagonist;  GABAA-R: GABA-A receptor; PTX: picrotoxin. 
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POTENTIAL APPLICATIONS OF THE RESULTS 

 

The process of reproduction requires energy availability in access. Chronic energy 

deficiency, usually resulted from reduced food intake, overexercise or stress, can disturb the 

hypothalamic-pituitary-gonadal (HPG) axis resulting in anovulation mainly due to improper 

metabolic hormone levels. Nevertheless, it does not necessarily mean that only serious metabolic 

disorders or energy deficiency might cause problems in reproduction. Dietary changes can also 

initiate modulation of the metabolic signals in the serum affecting the reproductive process. 

Hence, it is critical to understand the central control of reproduction for new possible treatments 

in infertility caused by metabolic disturbances and the scientific fact-based promotion of the 

importance of balanced diet. 

Fluctuations in the metabolic hormone levels are even able to impair the HPG axis 

orchestrated by GnRH neurons and lead to infertility in humans. Anorexia nervosa, diabetes, and 

obesity, for example, might be related to anovulatory syndromes. The novel regulatory 

mechanisms whereby secretin and IGF-1 act on GnRH neurons described in this thesis call 

attention for the fact that the new drugs developed as obesity and diabetes therapy might also 

affect fertility.  Furthermore, high serum concentration of IGF-1 is detrimental because it is 

thought to play a role in the pathophysiology of the polycystic ovary syndrome (PCOS). This 

syndrome is one of the highest incidence disorders causing infertility in women impacting 5-10 

% of them. Medication of these patients consumes tremendous amount of energy with huge 

medical cost. The exploration of IGF-1R related signaling pathways in GnRH neurons provides 

new insights into the mechanisms operating in these kinds of infertility problems.    

My results showed the direct regulatory action of the metabolic signal molecules secretin 

and IGF-1 on GnRH neurons and elucidated the molecular mechanisms in the downstream 

actions of these hormones. Our results further support the relevance of dietary changes in 

reproductive disorders such as PCOS, anorexia, obesity, and diabetes. 

The interaction between the metabolic and reproductive systems possesses a significant 

pathophysiological relevance. The cellular and molecular mechanisms that link energy balance 

and central regulation of reproduction are still not well understood.  By clarifying the effects of 

secretin and IGF-1 in the central regulation of reproduction, we have contributed to a better 

understanding of the relation between nutritional status and gonadal function.  
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