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1 Preface 

In 1924, Hans Berger, driven by his search for the “psychic energy” of the brain [1], put together a 

machine called “electroencephalograph”, and managed to measure for the first time electric activity 

arising from the brain through the skull [2]. What he saw was a wavy activity pattern, roughly 

sinusoid of shape, waxing and waning, repeating itself cca. 10 times every second. After him, it is 

sometimes called “the Berger rhythm”, but these wave patterns today are more well-known as alpha 

waves, due to their primacy in the family of brain oscillations. 

 

Figure 1.1 The electroencephalogram of man, as measured by Hans Berger in 1924. 

The top trace is the EEG, the bottom trace is a reference waveform with a frequency of 10 Hz. From 

[2], image enhanced using Microsoft Word. 

Berger did not know back then how lucky he was. It is arguably not always the case in science, but 

the importance of these waves that he discovered was inherently related to the mere fact that he 

could actually measure them. In order for neuroelectric activity to be measurable from outside the 

skull, two main prerequisites should be met: the spatial alignment of the electric fields and the 

temporal (in-phase) synchrony of their fluctuations. The spatial alignment requirement is met due 

to the organization of cortical tissue: the somatodendritic axes of cortical neurons – especially 

pyramidal cells – are perpendicular to the surface of the cortex, and the fields arising from their 

postsynaptic potentials (and possible other potentials, see e.g. [3]) are thus aligned appropriately to 

be summated into a field potential that also reaches the scalp surface. The temporal synchrony 

prerequisite is more interesting, because synchronization of the activity of neurons arguably requires 

some kind of communication between them. Of course, synchrony can arise through simple physical 

interactions [4], but in the last decades it has become clear that neural oscillations and their patterns 

of synchronization are the main governing principles of the temporal organization of information 

processing and communication in the brain [1, 5]. That is, oscillations in the EEG, including those 

in the alpha band, are not epiphenomenal fluctuations that we can measure due to their large 

amplitude, but they are inherently meaningful and important. 

DOI:10.15774/PPKE.ITK.2017.004



 
 

2 
 

Ironically, though, since their discovery alpha oscillations have become a nuisance for a lot of 

researchers, as they had become preoccupied with another kind of synchrony: synchrony with 

sensory events. As measurement technology has become more advanced, EEG activity waveforms 

that are synchronized to external events, i.e. event-related potentials (ERPs), have become easier to 

measure and quantify, and alpha activity that is not time-locked to stimulation was mostly averaged 

out or was regarded as background noise, a sign of “idling”. Methodology that enables the efficient 

characterization of the diverse oscillatory signals that can be acquired by M/EEG have only become 

available with the advent of microcomputers (see e.g. [6]). By today, alpha activity, and oscillations 

in general, have come back to the focus of research: a regimen of methods to quantify oscillatory 

signals have become available [7], which also led to a huge body of experimental results and 

competing theories on the role and nature of alpha oscillations [8–13]. 

In this dissertation, I will first describe some principles of object encoding and attention in the visual 

system, then will continue with summarizing our current knowledge on the role of alpha oscillations 

in sensory processing and attention. Then, I will present original research that provides novel insight 

about how alpha oscillations contribute to visual attention and visual expertise in the case of 

complex natural objects. 
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2 Introduction 

2.1 Attention and stimulus encoding in the visual 
system 

The brain consists of approximately 100 billion neurons, with an estimated number of 200 trillion 

synapses between them [1]. Synapses, the elaborate structures of the dendrites and soma can all be 

regarded as minute biophysical computing units, which, working together, constitute the enormous 

computing power of the brain. However, to achieve adaptive behavior, the brain faces the daunting 

task of extracting the behaviorally relevant portion from the enormous amount of complex and 

structured, but also uncertain information available in the environment, which also has to be done 

within a limited time. With this in mind, considering brain functions as resource allocation problems 

is an important perspective. 

Visual attention is the strategy to tackle this resource allocation problem in the case of visual 

perception [14–17]. It is clear that instantaneous and full analysis of a complex visual scene is not 

feasible, as demonstrated by everyday experiences like looking for a key on a cluttered table or a 

face in a crowd. This practically means that visual stimuli will compete for the representational 

resources of the brain, and this competition can manifest on multiple levels from visual analysis to 

motor output [14]. Focusing on the ventral visual stream, the chain of areas responsible for detailed 

shape representations and visual object recognition, receptive fields can be considered the scarce 

resource that stimuli compete for. Receptive fields are small and respond to simple visual features 

at the input stage of the ventral stream (V1), and become progressively larger and have more and 

more complex response properties in higher-level areas, up to the extreme of ventral temporal 

cortical areas representing complex natural objects like faces [18], body parts [19], animals, 

everyday objects or visual words [20] with spatial receptive fields that cover a large portion of the 

visual field (~20-25°, [14]). The key idea is that if multiple objects are present in a receptive field 

(which is quite probable in the case of the aforementioned large receptive fields in the ventral 

temporal cortex), then the processing resources available should be divided between them. 

Attention, according to the biased competition theory, can resolve this competition by suppressing 

the processing of irrelevant stimuli, freeing up representational resources for the attended stimulus 

almost to a degree as if the irrelevant stimulus was not even there. 
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Both these competitive interactions and the way attention can resolve them are well captured by the 

more general neurocomputational principle of response normalization, which states that responses 

in the cortex (on multiple levels of its organization) are normalized so that overall activity across a 

neural population (the normalization pool) remains constant [21, 22]. This mechanism can ensure 

that cortical activity has an upper bound, avoiding pathological overactivation, while also 

optimizing the dynamic range of neural coding [21, 22]. It appears that lateral inhibitory connections 

have a prominent role in normalization and biased competition, but there is more and more evidence 

that feedback pathways also influence the process [23, 24]. 

Another aspect of optimal resource allocation concerns the representations (or “filters”) that the 

cells in the visual cortical hierarchy implement. The organization of the visual system is governed 

by information theoretic principles. In particular, it realizes the representational structure that is 

most energy efficient and adaptive given the statistical structure of the visual environment. For 

example, the Gabor-like receptive fields of V1 can be acquired by a computational approach applied 

to a large set of natural images, trying to find a basis set (“receptive fields”) that is maximally sparse 

(i.e., the representation of the most probably occurring images requires the least number of 

representational elements to be active) [25, 26]. 

In a slightly different formulation, the visual system (or the whole brain [27]) attempts to predict 

the input patterns by trying to infer the underlying cascade of hidden causes that might have created 

them, thereby construing itself as a generative model of the environment [28]. These models have 

compelling explanatory power both theoretically and practically. They apply not only to the 

structure of the visual system, but also its functioning and plasticity: perceiving a stimulus entails 

inverting this generative model as neural activity cascades up the visual hierarchy, and also 

modifying model parameters as manifested in the plasticity phenomena of the visual system such 

as perceptual learning and the formation visual expertise. 

Most importantly to the subject of this dissertation, predictive coding models highlight the 

importance of feedback connections in the visual cortical hierarchy [29, 30]. In order for hierarchical 

generative models to work, each level of the hierarchy should pass a prediction to the lower level. 

According to the predictive coding account of the visual system, this occurs through feedback 

connections. In turn, the lower level should return a prediction error, which in the visual system 

corresponds to feedforward connections. Based on this prediction error, the parameters on the higher 

level are updated so that future prediction errors would decrease, and this logic applied iteratively 
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throughout the whole hierarchy until convergence gives rise to perception and stimulus 

representations that are optimal in the sense laid out above. Recent research has led to important 

insights regarding how these principles are realized in the physiological mechanisms underlying 

attention and object perception, to which we return later in this section. 

Several characteristics of the higher level visual system also emerge if we consider the consequences 

of these principles. Probably the primary parameter to describe a visual stimulus is its category – 

for example, human faces, buildings or visual words clearly have highly distinct “underlying 

causes” (basic visual components and organization) and also different implications for adaptive 

behavior. Reflecting these inherent discrete classes of stimuli in the visual world, the highest levels 

of the visual hierarchy have a modular organization, with distinct areas encoding frequently 

occurring and/or behaviorally relevant visual categories. For example, high-level encoding of face 

stimuli (supported by a broader network of visual areas) involves a circumscribed area in the ventral 

temporal cortex, called Fusiform Face Area (FFA) [18], while there is another region called Visual 

Word Form Area (VWFA) specifically involved in the processing of printed words [20, 31]. These 

two categories and their respective brain networks are probably among the most researched model 

systems in the research of object perception. The development of these areas probably builds on 

some innate liabilities and, relatedly, more abstract gradients in the representational space of 

potential high-level objects[32, 33], but experience and the acquisition of visual expertise is 

arguably highly important in this process. 

Considering exemplars within one category, predictive coding models posit that the most probable  

(or frequent) ones will be recognized most effectively: after stimulus category is recognized, these 

stimuli will match the “first guesses”, or a priori predictions of the system, which means that the 

feedback loops described above will converge faster. This is in accordance with the norm-based 

encoding scheme faces are thought to be represented in the visual system [34, 35]. At the expense 

of being fast for the more frequent ones, perceiving rare, peculiar exemplars or ones presented in 

unusual circumstances or orientations can be substantially slower. These phenomena are used in the 

research of visual expertise: for example, for faces presented upside-down, both 

electrophysiological and behavioral responses are slower [36–38], and also, visual expertise for text 

during reading makes us less effective unusual formats or reading conditions [39]. 

Besides and despite this specialization, it is also remarkable how robust object recognition can be. 

For example, partially occluded or noisy images of objects can still be recognized [40, 41]. As a 
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consequence of the coding strategies laid out above, signals that match the representational 

dictionary of the visual system will be amplified, and in turn, those that are orthogonal to them will 

be suppressed. Thus, in the case of noisy or partial input, the system will perform pattern completion 

and converge to the closest potential interpretation of the input. An example from daily experience 

for this is pareidolia, our liability to see, for example, faces on household objects or on the surface 

of Mars. A more extreme example is the notion that sensory deprivation can induce hallucinations, 

which is potentially related to the overactivation of top-down predictions due to the lack of bottom-

up input [42, 43]. In a condition called Charles Bonnet syndrome, a surprisingly large number (10-

20%) of psychologically normal visually impaired people (e.g. elderly people suffering from 

macular degeneration) experience complex, vivid hallucinations, especially during time periods of 

relative inactivity [44–46]. 

To sum up, the brain makes use of its limited representational resources both through learning robust 

optimal stimulus encoding strategies especially for frequent specimens of behaviorally important 

stimulus categories, and also by attention that boosts behaviorally relevant stimulus representations 

among concurrently present competitor stimuli.   
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2.2 Alpha oscillations: from idling through 
inhibition to active processing 

The first functional property of alpha oscillations was the so-called alpha blocking response, which 

was demonstrated already by Berger [2] and later confirmed by Adrian and Matthews [47]. Alpha 

blocking is the reduced amplitude of alpha oscillations upon the opening of the eyes, compared to 

large-amplitude alpha waves in the baseline, eyes-closed state. On the simple premise of associating 

higher alpha activity with the lack of input, one could infer that alpha oscillations could indicate a 

resting or idling state of the cortex. In the second half of the XX. century, when efficient and cheap 

computing and also multielectrode scalp measurements have become more and more available, 

research on alpha oscillations continued to expand from this starting point. Based on these 

measurements, it was established that the blocking response related to the opening of the eyes, 

which is measured best over the posterior scalp and originates from the visual cortex, is 

generalizable to other cortical areas and other functions: alpha power decreases in the visual cortex 

upon visual stimulation (light flashes with closed eyes, compared to pre-stimulation), drops in the 

auditory cortex during auditory stimulation and also over motor areas preceding movement [48]. 

This disappearance of oscillatory activity was named event-related desynchronization, abbreviated 

as ERD, and is interpreted as active processing in a local patch of the cortex that is concerned with 

the function investigated [6, 48]. 

Thus, areas which are task-relevant produce alpha ERD. Areas that are irrelevant to the task at hand 

remain idle, as indicated by alpha amplitude staying on high levels – or even increasing compared 

to baseline, which is termed event-related synchronization (ERS). ERS is observed, for example, 

over motor areas in a visual task, and over visual areas and non-engaged motor areas preceding and 

during voluntary movement onset [49, 50]. Following desynchronization, a rebound power increase 

is also often observed, which can surpass baseline levels [49] – this is sometimes called re-

synchronization. (It should be noted that in the first 300 ms after stimulation a short phasic increase 

in spectral power is often present, but this corresponds to the evoked response that is phase-locked 

to stimulus onset, while the modulations described above are all changes in the strength of ongoing 

“background” oscillations due to stimulation, which are not phase-locked to the stimulus; i.e., they 

are induced power modulations.) 
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Importantly, alpha ERD and ERS are not restricted to the domain of sensory stimulus processing 

and motor processes, and it is clear that even stimulus-induced alpha responses are profoundly 

influenced by top-down processes [10]. For example, in working memory (WM) tasks – in 

accordance with the previously mentioned results – encoding, and also the retrieval of the memory 

items is associated with alpha ERD. Based on the idling hypothesis, one would expect that the 

maintenance of sensory information in memory would also be accompanied by an ERD, but 

Klimesch and colleagues [51] observed that, especially if subjects have to avoid the intrusion of 

memory items from previous trials, i.e. high interference, alpha oscillations displayed ERS in the 

memory maintenance period. This, and various other results, has led to the hypothesis that ERS 

does not simply reflect a passive baseline state of idleness, but active, top-down inhibition [8]. 

How alpha oscillations are related to top-down processes most profoundly appears in the field of 

attention research. In particular, the alpha ERD in the cortical area corresponding to the task-

relevant modality (e.g. auditory vs. visual) has been shown to occur before the stimulus, as far as 

the subject knows which kind of stimulation to expect [52]. The same was demonstrated within the 

visual modality first for the deployment of attention to either visual hemifield, that is, after a cue 

that indicated that a target stimulus would appear e.g. in the left visual hemifield, alpha power 

decreased over the visual cortex in the right hemisphere, while it increased in the left hemisphere 

[53]. This result has been replicated (and extended) in a huge variety of experiments. For example, 

it has been shown that this ERD/ERS patterning can be used to track the retinotopic locus of spatial 

attention beyond the binary distinction of visual hemifields with remarkable accuracy [54]. 

Importantly, several of these experiments specifically addressed the issue of ERS being a process 

related to active suppression rather than the return of baseline excitability state (e.g. [54, 55]). Only 

a few studies have attempted to show whether and how the suppressive role of alpha oscillations 

extends to non-spatial varieties of attention. Snyder and Foxe [56] have shown that attending to the 

color or motion direction of a moving dot field modulates alpha oscillations in the dorsal and ventral 

aspects of the visual system in a way that is compatible with the suppression account. More recent 

results indicated that the temporal dynamics of covert spatial orienting [57] and temporal 

expectation [58] is also closely tracked by alpha oscillations. To conclude, a huge body of research 

demonstrates that the inhibition account has a compelling explanatory power, especially in the case 

of visuospatial attention. 
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Despite all this, it has also become clear that the relation between alpha activity and inhibition is far 

from general, and unfortunately, the exact boundary conditions of when an alpha power modulation 

measured on the scalp might indicate inhibition or suppression are only subject to speculations. 

Palva and Palva [11], for example, argue for the active role of alpha oscillations in general, including 

the working memory scenario (ERS depending on load and interference) from which the inhibition 

account was derived [51]. As mentioned above, WM-related ERS is interpreted in the inhibition 

framework as suppression of competing representations, for example those lingering from the 

previous trial. In contrast, the active processing account posits that alpha oscillatory network 

spanning the sensory and frontoparietal cortices actively organizes neural activity in a way that is 

essential for the maintenance of the representations of the memory items [11]. This function of alpha 

oscillations – and low-frequency oscillations in general – arises from the physiological mechanisms 

that cause the primary information processing activity of neurons – spiking – to occur at preferred 

phases of oscillations [59]. The timing of spikes is essential for coordinated neural computing, 

therefore neural oscillations are the primary organizers of brainwide dynamic neural ensembles that 

make complex computations underlying adaptive perception and behavior possible [1, 5, 60]. The 

updated version of the inhibition hypothesis, the inhibition-timing hypothesis [8] also takes this into 

account as a possible mechanism of selective inhibition. 

Recent research has provided evidence for a computationally and neurophysiologically 

circumscribed role for alpha oscillations in the networks of attentional and visual areas. Buschman 

and Miller [61] demonstrated in macaques that the flow of information dominantly occurs in the 

gamma band from parietal to frontal areas during bottom-up, stimulus-driven attention, while beta 

oscillations convey top-down information in the direction of frontal areas from the parietal cortex. 

In the visual cortical hierarchy, in supragranular layers where feedforward connections originate 

gamma oscillations are most common, while infragranular layers send feedback connections to 

lower areas and produce alpha/beta oscillations [62–64]. These observations suggest that alpha/beta 

and gamma oscillations would be the preferred channels for feedback and feedforward 

communication in the visual hierarchy, respectively. This hypothesis was tested and validated in the 

macaque using invasive recordings [65, 66], and also in humans using MEG [67]. These findings 

have profound implications on the interpretation of noninvasive recordings from human subjects. 
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To sum up, the different theories debate how the amplitude and phase dynamics of alpha oscillations 

affect cortical circuits. Also, other frequencies on the spectrum could be also interesting targets for 

investigating the neural processes of visual object perception and attention (Box 2.1). However, 

they do agree that alpha oscillations mark an essential component of brain function, being a main 

orchestrator of coordinated activity that provides the neurocomputational background for 

fundamental aspects of the human mind such as attention and consciousness [8, 9, 11], and therefore 

the alpha band is a good candidate to focus our analyses on. 

 

Box 2.1 The oscillatory architecture of the brain 

This dissertation focuses on alpha oscillations, which are usually the largest amplitude 

oscillations in the human brain. Of course, it is impossible to adjudicate between frequency 

bands, as they are equally important in forming the oscillatory architecture of the brain. Our 

hypotheses were nevertheless focused on alpha oscillations because they are especially 

prominent in the visual system which is the main subject of this work, and are frequently 

implicated in attentional processes. In order to be a little more comprehensive, here I promptly 

traverse the whole spectrum, also mentioning some possible connections to the attention and 

object perception. Note that the boundaries of the frequency bands are somewhat arbitrary, and 

may vary between individuals, species, arousal levels or cortical states. 

The beta frequency band, ranging from around 12-15 Hz up to 30 Hz is the closest relative of 

the alpha band. Attentional effects are frequently found to extend up into the beta band, and beta 

also appears equally important as alpha as a channel for feedback communication in the visual 

hierarchy [1]. Beta oscillations are most prominent in sensorimotor cortices, their 

desynchronization response is observable there in preparation for limb movements [2]. Frontal 

beta activity is theorized to be related to reward and motivational factors [3–5]. A general theory 

suggests that beta-band activity might be related to the maintenance of the current sensorimotor 

set, or signalling the status quo [6]. Theta-band (4 Hz to 7-8 Hz) activity frequently modulates 

the phase and amplitude of higher frequency oscillations [7–9]. It is the most dominant frequency 

band in visual evoked responses. Theta oscillations most dominate the frontal cortex, especially 

its medial part, and the hippocampus [10]. Frontal theta is found to be important in cognitive 

control, conflict and error monitoring [11, 12], while hippocampal theta is implicated in long 

term memory and navigation [13]. The Delta band (<3 Hz) is most prevalent during sleep, and 
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is also involved in motivation-related processes and error monitoring [14, 15]. Gamma-band 

activity (>30-40 Hz), among LFP and EEG signals, is thought to most closely reflect neural 

activity, especially in the high gamma band (>100 Hz), which is directly related to multiunit 

activity [16]. Accordingly, unlike lower frequency oscillations, the attentional modulation of 

gamma activity can mostly be interpreted as an index of changing intensity of neural activity 

(e.g., [17]). Relatedly, the gamma band is the main frequency of feedforward communication in 

the visual system [18]. 

Also importantly, the present work focuses on the scalp-measured oscillatory power, which 

reflects locally synchronous neural activity in the brain. However, the phase of the oscillations 

is also important, and can have different functional relevance if measured relative to, a stimulus, 

the phase at the same frequency at a different cortical location, or the phase at a different 

frequency at the same or another location. As mentioned above, amplitude can be also modulated 

by the phase of another oscillation. Also, some researchers propose that there are other 

parameters that can be used to characterize oscillatory activity in the brain that might have great 

physiological relevance, like the slope of the power spectrum [19], or the nonsinusoid features 

the oscillations display [20, 21]. So, it is clear that focusing on alpha power is looking at a small 

slice of the potential hypothesis space that the analysis of brain oscillatory activity offers. 
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2.3 Motivations and goals 

In this dissertation, I venture to show two facets of how alpha oscillations constitute an important 

cornerstone in the neural machinery of visual object processing in humans. The two facets 

correspond to the two resource allocation problems laid out in the Introduction (Section 2.1): I. 

Resolving instantaneous competition for computing resources by attention; II. Optimizing the use 

of neural resources by specialization to frequent and important stimuli by visual expertise. Two 

experiments were conducted under controlled fixation conditions, but were designed so that they 

would provide information on how the mechanisms in question would work in real-world vision: 

operating on complex visual objects in dynamic spatiotemporal context. 

Attention in everyday circumstances is quite different from how it is studied in the lab. Laboratory 

experiments mostly involve simple, artificial stimuli separated in both space and time, while in the 

wild, complex stimuli in dynamic, cluttered scenes are rapidly sampled by eye movements. This 

scenario requires dynamic object-based attention. Given the known role of alpha oscillations in 

spatial and feature-based attention, we hypothesized that they would similarly contribute to 

object-based attention. In the first experiment, this question was investigated using complex 

natural stimuli (words and faces) presented in spatial overlap (as in a cluttered natural scene) in 

relatively fast-paced sequences (mimicking temporal context during natural vision). 

At first, both the hypothesis formation and the interpretation of the object-based attention 

experiment was mainly based on the inhibitory account of alpha oscillations that dominates most of 

the literature on attention. However, simply taking alpha oscillations as a signal of attentional 

inhibition did not perfectly align with every aspect of the results acquired, also in agreement with 

several lines of more recent research pointing to the more nuanced (and less straightforward) 

interpretations on the possible role of alpha activity in the visual system. This led to the following 

question: could we relate alpha oscillations to expert object processing in the visual system? 

The role of alpha oscillations in expert object processing was investigated using visual words as 

model stimuli. Although the main perspective on reading and word recognition has arguably been 

from that of neurolinguistics, understanding the visual cortical processing of printed words, the 

interfacing and interactions of the visual system with higher level lexico-semantic subprocesses of 

reading is of hallmark importance. Studying visual word recognition by comparing neural responses 

to words with those evoked by pseudowords or other objects has been a fruitful approach, but subtle 
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manipulations affecting mainly the visual properties of text while leaving its content and overall 

“legibility” relatively unaffected has remained an important, less traversed avenue in current 

research. The second study included in this dissertation takes this approach: letter spacing, a key 

configural property of words, was manipulated to probe the neural correlates of visual expertise for 

orthography. 

The spatial context of natural reading was mimicked by displaying flanker words around the target 

word. In this case, no further measures were taken towards more ecological validity within this 

experiment. However, another experiment was also conducted, where participants read lines of text 

with the same spacing manipulation in a natural way, with freely moving eyes [J2]. This natural 

reading experiment is not included (but is shortly described) in this dissertation, but fixation-

triggered responses from it will be compared to event-related potentials acquired in the present 

work, and the implications will be discussed to better assess how these mechanisms might be 

relevant during natural reading. 

Understanding the visual cortical processes underlying reading and word recognition can also 

provide a deeper understanding of reading disorders like dyslexia.  

The goals of the dissertation can be summarized as follows: 

First, I will show that in accordance with its already established role in spatial attention, alpha 

oscillations are also at play when attention selects complex natural objects (faces and words) in 

cluttered visual scenes where relevant and irrelevant visual elements overlap in space. 

Second, I will demonstrate on the case of printed word stimuli that the way the visual system 

optimizes its processing mechanisms to frequently encountered and/or important stimulus 

configurations – termed visual expertise – is also reflected in alpha oscillations. I will show how 

visual expertise molds the ERP responses as well, and relate the modulations to those observed 

during natural reading  

Finally, I will discuss the practical and theoretical implications of the findings. I will attempt to 

interpret the results from the two experiments in a common framework, and will explore the 

potential overlaps between the cortical network mechanisms of the two investigated phenomena, 

and give some examples how these issues could be addressed in further experiments.  
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2.4 Methods 

The present work is based on EEG experiments with visual stimulus presentation conducted on 

human participants. The results were analyzed in terms of Event-Related Potentials and neural 

oscillations as characterized by wavelet-based methods. Statistical methods involve conventional 

parametric tests and mass univariate tests using Monte Carlo methods for type I error control. The 

methods of each experiment are also described in the respective Methods sections, but here I provide 

an overview of the EEG and statistical methods used and discuss some general methodological 

considerations and their relevance to the current work in more detail. 

As already hinted at in the Preface, scalp EEG measures temporally synchronous postsynaptic 

potentials that are thought to originate primarily from the principal pyramidal cells with dendrites 

perpendicular to the cortical surface [68], besides other sources [3]. As for instrumentation, an active 

electrode system was used (actiCAP, Brain Products, München, Germany) to measure EEG, which 

has higher signal-to-noise ratio owing to the preamplification circuitry in the sensors themselves 

[69]. These systems, in theory, permit high impedance recording, and owing to this, a 20 kΩ 

impedance threshold was used during the preparation of the first experiment. However, as we 

learned that some noise sources (low frequency noise from sweating in particular) are stronger in 

high impedance recordings even in the case of active electrode systems [69], we decided to use a 

lower impedance threshold of 5 kΩ during the preparation phase of our newer experiments 

(including the experiment in Chapter 4 of this work), matching more conventional thresholds 

applied with passive recording systems in the literature [70]. We decided to do so because a) the 

noise sources of question might become particularly stronger after longer periods of recording, and 

our experiments are usually long, b) reaching the lower impedances also does not take too much 

extra time relative to the whole experiment, especially as weighed against c) the potential benefits 

of lower impedance recording even in the case of active electrode systems [69]; and, finally d) 

studying non-sensitive neurotypical populations permitted us to do so. All other measurement 

parameters and general preprocessing methods were conventional in the field, and are described in 

detail in the Methods sections of the respective chapters. 

Event-Related Potentials (ERP) are also analyzed [70], but the primary focus of this work is 

oscillatory activity in the alpha band. While ERP is only sensitive to activity that is phase-locked to 

the event of interest, frequency domain analyses permit the characterization of both the former 

(evoked) and also non-phase-locked (induced) signal components. Time-frequency representations 
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were obtained using wavelet convolution with complex Morlet wavelets [7] as implemented in the 

MATLAB Wavelet Toolbox. The wavelets applied were short (the bandwidth parameter was set to 

1), which favors temporal resolution at the expense of frequency resolution. Although larger 

frequency resolution is favorable, for example, for characterizing oscillations in the lower and upper 

alpha subbands, in this research we were more interested in the temporal dynamics of the alpha 

modulations, and also, in the object based attention experiment, the interstimulus interval was short, 

and longer wavelets would have made our analysis more sensitive to evoked activity, while non 

phase-locked modulations were of primary interest. 

While temporal resolution, as compared to fMRI, is usually listed as a benefit of using EEG for 

cognitive neuroscience, spatial resolution is arguably a shortcoming of it. Due to volume 

conduction, all the electrodes pick up signals from all points of the brain, and the boundaries of the 

different compartments of the skull also cause further spatial smearing in the signal [68, 70]. While 

a plethora of more and more sophisticated source imaging methods have become available in the 

last decades, most of them requires individual subject MRI, and larger electrode coverage is also 

advisable for their effective application. Therefore, we decided to use the surface Laplacian method 

(also known as Scalp Current Density or Current Source Density mapping). This method, with a 

few assumptions and simplifications about the structure of the skull, approximates the current 

flowing through the dura mater, i.e. estimates an underlying configuration of current sinks and 

sources for a given topographic potential distribution [68, 70–72]. Practically, this means that far-

field signals are suppressed, and the current density estimate at each electrode will be more sensitive 

to neural activity in the cortical area directly below the sensor. The surface Laplacian has been 

shown to improve not only the spatial resolution of EEG, but also its sensitivity to genuine temporal 

differences [73].  

Apart from standard paired t-tests and analysis of variance, this work makes use of mass univariate 

testing with type I error control by cluster-based permutation tests, as laid out in [74] and 

implemented in the FieldTrip MATLAB toolbox [75]. Permutation tests make no assumption about 

the distribution of the tested quantities as parametric tests do. Owing to this, and to the fact that a 

multitude of tests have to be performed, these tests are more powerful than simple parametric tests. 

For permutation tests, the null hypothesis is that the conditions in the experiment are exchangeable 

with respect to the statistic tested. In the paired one-sample case, this is practically tested by 

calculating the same statistic multiple times so that the signs of the individual values are reversed 

at each iteration. This yields a null distribution to which the observed statistic is compared – if the 

DOI:10.15774/PPKE.ITK.2017.004



 
 

17 
 

observed statistic is more extreme than the 95% of the null distribution, the null hypothesis of 

exchangeability is rejected. 

In the case of multiple tests, for example when multiple time and/or frequency and/or channel 

samples should be tested, the problem of inflated type I errors ensues. One solution for this is 

clustering neighboring significant results together, and calculate a cluster statistic from the 

individual test values. For example, the t-values for neighboring significant test can be summed, 

which yields the cluster statistic. Calculating the cluster sum statistics in each permutation yields a 

null distribution of the cluster statistic in this case, and comparing to this null distribution achieves 

type I error control at the desired α level.  

This framework is versatile, because the analysis pipeline can be adapted to specific questions at 

several points (, while keeping in mind the utterly important caveats [76, 77] ). Designing an analysis 

pipeline always entails arbitrating several tradeoffs. Similarly to other methods, one has to decide 

what hypotheses should actually be tested. In the group-level analyses conducted in this work, the 

original input data format was subjects × channels × time × conditions. (Oscillatory frequencies and 

arbitrary more dimensions could be taken into account analogously to methods described here.) The 

most straightforward way to analyze this is to conduct repeated measures ANOVAs with respect to 

the condition(s, with appropriate factor structure) at each channels × time data point, wherein 

neighborhood in channels × time space can be used to form clusters to correct for multiple 

comparisons. An important limitation during interpretation of the results is that it is fallacious to 

rely on the contours defined by the significant clusters acquired from analyses like this. Put 

differently, where the significance threshold is crossed in space or time provides no statistical 

support for inferences about where in space or when in time the effect in question occurred. 

Alternatively, any set of linear combinations can be formed from the channels × time matrix to 

define a constrained hypothesis set, and these can be either tested in a mass univariate framework 

(where. again, a neighborhood structure can be defined). These linear combinations can correspond 

to, for instance, channel averaged (pooled) time series, or average topographic distributions in time 

windows – this corresponds to a conventional Region of Interest (ROI) analysis. As another option, 

the linear combinations can entail contrasts. With appropriately defined contrasts, specific 

hypotheses about response patterns within the channels × time matrix (and their interactions with 

experimental conditions) can be tested (e.g. lateralization or temporal fluctuation) – this step can be 

also regarded as conducting a repeated measures (factorial) ANOVA on spatiotemporal regions of 

DOI:10.15774/PPKE.ITK.2017.004



 
 

18 
 

interest. For example, (as also described in Section 4.2.4,) the second study in this work focused on 

parieto-occipital alpha oscillations, hence spatial ROIs (electrode pools) were formed bilaterally. 

Lateralization of effects were also of interest, thus a lateralization contrast was added to the spatial 

ROI set. Multiple tests were conducted along the temporal and the newly derived 3-element spatial 

dimension; temporally adjacent samples and data from the left and right electrode pools were 

considered neighboring, but the lateralization contrast was considered to be isolated during 

clustering. 

Quite obviously, the more a priori constraints are imposed on the hypothesis set, the more sensitive 

the analysis will become for the hypothesized effect, but, in turn, it will become less sensitive or 

even blind to other effects. A little less obviously, even if a highly focused ROI analysis is 

conducted, it is not only possible but also highly advisable to “take a step back” to observe and 

appraise the broader context of the effect during interpretation, potentially including also that part 

of the data that is not covered at all by the statistical analysis [78]. Continuing the above example, 

Figure 4.3A displays the results of the statistical analysis that was conducted (showing significant 

effects on the time series of the two electrode pools, corrected for multiple testing). In addition, 

Figure 4.3B shows the effect on all the 64 electrodes separately as topographic distributions, to 

show that the effect actually conformed to our expectations, and displays a physiologically plausible 

topography. 

As implied above, not forming ROIs but testing on each electrode leaves the stage open for arbitrary 

possible effects, but at the cost of reduced sensitivity. In an ideal case, this could be mitigated by 

defining a ROI on an independent dataset. However, data collection is usually costly, so alternative 

strategies are desirable, for example, under certain boundary conditions, ROIs can be defined using 

contrasts that are orthogonal to the effect under investigation [79, 80]. An essential prerequisite for 

such strategies is that they should not increase the Type I error rate – any circularity easily leads to 

serious Type I error inflation and consequently, false results. 

In the first study described in this dissertation, a two-step analysis pipeline was used that included 

such a ROI definition step. The initial hypotheses to be tested were not constrained along the spatial 

dimension, but temporal windows of interest were defined, so multiple tests were conducted on all 

the channels and in each of the five time windows. The ROIs for the next analysis step are defined 

so that channels are selected where the number of significant time windows for the current main 

effect of interest are largest, and their contralateral pairs are also selected. From the resulting 
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symmetrical channel sets, one pool is defined for each hemisphere. The second step involves space 

(hemisphere factor: left and right) and time (sequence factor: 5 time windows of interest) as repeated 

measures factors in an ANOVA, and the interactions of these factors with the current main effects 

of interest are tested. For example, the effect of category (face vs. word) was tested on all channels 

in each time window separately (64×5=320 tests), with cluster-based correction. Then, a bilateral 

pool was defined based on this, using which the category × hemisphere, category × sequence and 

category × hemisphere × sequence interactions were assessed (, but not the main effect of category).  

The important point to note is that the effects tested at the second step correspond to dimensions 

along which multiple tests were conducted independently in the first step, (and also, no effect tested 

at the first step is probed again in the second,) and this rule avoids circularity and type I error 

inflation. This intuition was tested using Monte Carlo methods. For simplicity, the data of one time 

window (S6) was extracted from the attentional experiment, and the above analysis was conducted 

with only the hemisphere factor in the second step. Using permutation of the two conditions, null 

data was generated (N=9999), and the same two-step pipeline was run on all the 9999 permuted 

datasets. From this, the empirical type I error rate was estimated: αMC=0.049, 95% CI: [0.045 0.053]. 

This supports that the two-step procedure used in the first study does not inflate the false alarm rate 

of the analysis. Here, if we consider again the limitation in the interpretation of mass univariate 

results on spatiotemporal data – that the spatiotemporal significance patterns are not significant 

spatiotemporal patterns – it appears that this strategy can be a good step to remedy this problem as 

well. 

In summary, the two studies in this dissertation used conventional EEG methods with regard to 

recording and preprocessing, while the logic of statistical inference required more consideration. 

Being aware of the several methodological problems that surfaced in the last decade in the field of 

psychology and neuroscience (e.g. [77, 81–84]), the need for statistical methods to be both powerful 

and strictly valid was always considered a priority during this work. 
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3 Alpha oscillations in object-based 
attentional selection 

3.1 Introduction 

A remarkable ability of the visual system is that it can deal with the clutter of visual objects in our 

environment. Given its limited processing capacity, this can only be achieved via attentional 

selection, that is, assigning priorities to parts of visual information that are relevant according to 

behavioral goals [14]. In neurophysiological terms, this implies that neural processes related to high-

priority visual information – attended regions of space, features or objects – should be facilitated 

[85–87]. Conversely, it can be advantageous to suppress the neural representation of irrelevant items 

(distractors) [88–91]. These inhibitory processes are especially important for efficient attentional 

selection when several objects are simultaneously present, which frequently occurs during everyday 

visual experience [92, 93].  

A prominent neural signature of attentional distractor suppression is enhanced oscillatory activity 

in the alpha frequency band [8, 12, 13], which can be measured in human subjects non-invasively 

by means of electroencephalography (EEG). It is well-established that during spatial attentional 

tasks, the representation of the unattended visual space is inhibited through enhanced alpha activity 

in the corresponding parts of the visual cortex [53–55, 94, 95]. More recently, it has been shown 

that this generalizes to feature-based attention: Snyder and Foxe [56] demonstrated that anticipatory 

alpha band power increases can be localized more ventrally when the motion of the presented dot 

field was task-relevant, as compared to more dorsal sources when attending the color of the same 

dots.  

However, when the visual system is faced with the visual clutter of multiple objects, the units of 

attentional selection are whole objects [96]. On what level of the visual hierarchy object-based 

selection operates is an outstanding question in recent research. The findings thus far support the 

assumption that, besides well-established modulations in category-specific areas in the ventral 

temporal cortex, object-based attention relies on top-down feedback signals biasing the activity of 

earlier visual areas based on high-level object knowledge [97–99]. However, whether inhibitory 
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processes involving alpha oscillations are invoked in object-based attentional selection remains an 

important unresolved question. 

To address this question, we designed a paradigm using word, face and composite word-face 

stimuli. In each trial, either the word or the face component was cued to be attended, the other being 

task-irrelevant. To maximize the engagement of object-based selection mechanisms and to 

minimize the involvement of spatial attention, all stimuli were presented foveally at the same 

location – that is, words were overlaid on faces in the case of composite stimuli. Words and faces 

are suitable to probe object-based attention because of the well-known, pronounced lateralization 

of their processing: category-selective neural activity dominantly takes place in the right and left 

hemisphere in the case of faces and words, respectively [18, 100]. Based on this, we predicted that 

object-based attention to either category in a compound word-face display will modulate the 

hemispheric lateralization of visual cortical alpha oscillations. In particular, attending to faces will 

lead to increased alpha power in the left hemisphere, which is dominantly involved in the processing 

of word stimuli, whereas attending to words will increase alpha power in the right hemisphere, 

which is dominant in face processing. We tested these predictions in the case of sustained object-

based attentional selection of face or word stimuli, presented sequentially (six stimuli, each 

presented for 683 ms) within a trial. 

3.2 Materials and methods 

3.2.1 Subjects  

Twenty healthy young adults participated in this study. All of them had normal or corrected-to-

normal vision; none of them had any history of neurological or psychiatric diseases. All participants 

gave their informed consent prior to starting the experiment, the procedures of which were approved 

by the Ethical Committee of the Budapest University of Technology and Economics. The data of 

three participants was discarded because of excessively noisy EEG recordings (less than 50% of the 

segments were clean, mean±SEM for retained subjects: 77±3%), and one subject was discarded 

because of lack of response in more than 15% of the trials (mean±SEM for retained subjects: 

3±0.7%). So, the data from 16 subjects was analyzed (9 female, mean±SEM age: 21.4±0.3 years).  
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3.2.2 Stimuli and procedure 

In the experiment, participants viewed short sequences of word, face and composite word-face 

stimuli while performing a one-back task (Fig. 3.1).  

Face images were front-view grayscale photographs of 13 male and 13 female faces. The 2°×2° 

square images were cropped with a circular mask with a diameter of 2° to eliminate external facial 

features and equated for contrast and luminance. Word stimuli were 26 Hungarian nouns (from two 

semantic categories: 13 fruits and 13 animals) rendered in black using a 12 point Arial font (maximal 

vertical extent: 0.4°). Words were 5-7 characters long, corresponding to widths falling between 0.9 

to 1.5 degrees of visual angle. From the above, composite stimuli were created by overlaying words 

centrally on face images (Fig. 3.1, right). All of the stimuli were presented at the center of the screen, 

slightly (0.2°) above which a blue fixation disc with a diameter of 0.1° was always present. The 

background was mid-grey, matching the mean luminance of face images. 

 

Figure 3.1 Schematic of the four trial types corresponding to the four experimental conditions. 

Each trial consisted of a Cue (at the bottom) and a sequence of six stimuli (top). These trial types 

followed each other in randomized order during the experiment.  

SOA: Stimulus Onset Asynchrony. ISI: Interstimulus Interval. 

Trials started with a cue displayed for 683 ms, which was either of the strings ’xxx’ or ’:-)’ rendered 

in the format and position described above. The cue was followed by a blank interval of 1 s, when 
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only the fixation disc was present. Then, six stimuli of one type (word, face or composite) were 

presented consecutively. Each stimulus was displayed for 683 ms, immediately followed by the next 

one – there was no interstimulus interval. The intertrial interval, from the offset of the last stimulus 

to the onset of the next cue, was 2 seconds long. 

Subjects had to deploy their attention and perform the task with respect to either words or faces, as 

indicated by the cue at the beginning of each trial – ’xxx’ and ’:-)’ referring to words and faces, 

respectively. For each subject, 240 attend-word and 240 attend-face trials were presented in 

randomized order. In both cases, for a 50% random subset of the trials (120 for attend-word and 120 

for attend-face), compound stimuli were used, the non-attended stimulus serving as a distractor. In 

the remaining trials, only the relevant stimulus was displayed. Thus, there were four experimental 

conditions (Fig. 3.1): attend-word distractor-absent (word only), attend-word distractor-present 

(word-face), attend-face distractor-absent (face only) and attend-face distractor-present (face-word). 

In one third of trials, the sub-category (male vs. female faces, animal vs. fruit words) was alternating 

throughout the stimulus sequence. In the remaining two thirds of trials, one or two one-back 

repetitions of stimulus sub-category occurred. The task of the participants was to count these one-

back events and indicate how much of them they saw with a three-button mouse after each trial, 

during the intertrial interval. (For example, a ‘male-female-male-female-male-female’ sequence 

would count as no (zero) one-back repetition, ‘fruit-animal-fruit-fruit-animal-fruit’ would count as 

one repetition, and so on.) This task was designed to sustain the attentional state of subjects 

throughout the whole trial as much as possible. 

Each subject completed 480 trials in 10 runs, leading to 120 trials per condition. Stimuli were 

presented on a 26” LG LCD monitor at a refresh rate of 60Hz, viewing distance was 56 cm. Stimulus 

presentation and subject response registration was implemented in MATLAB 7.1 (The Mathworks 

Inc., Natick, MA) using PsychToolbox 3 [101, 102]. 

3.2.3 Electrophysiological data acquisition and processing 

EEG was acquired using BrainAmp MR amplifiers and an actiCAP system with 62 active electrodes 

(Brain Products, Munich, Germany) mounted on an elastic cap according to the 10/10 system. An 

additional lower vertical EOG electrode was placed below the right eye. All channels were 
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referenced to the right mastoid (TP10), the ground was at electrode position AFz. Impedances were 

kept below 20 kΩ. The sampling rate of EEG was 500 Hz. 

Preprocessing and data analysis was done in Brain Vision Analyzer (Brain Products, Munich, 

Germany) and MATLAB (The Mathworks Inc., Natick, MA) using functions from EEGLAB [103] 

and custom scripts. The signal was bandpass filtered (Butterworth zero-phase filter in Analyzer, 

0.1Hz-70Hz, 24 dB/octave). Trial segments containing artefacts were marked using amplitude ([-

100 100] µV), amplitude difference (160 µV) and voltage step thresholds (20 µV per sample) and 

by visual inspection; these segments were not used in further analyses. Surface Laplacian 

approximation of the scalp current density (SCD) was calculated using the CSD Toolbox [71, 72] 

(spline flexibility m=4, λ=10-5). SCD-transformed data is reference-free, and is less affected by 

volume conduction [68]. Modulations of alpha oscillations was of particular interest in this study, 

so whole-trial segments were wavelet transformed using a complex Morlet wavelet (MATLAB cwt 

function, ‘cmor1-1’ wavelet) with center frequencies 8 to 12 Hz with 0.5 Hz steps. Afterwards, 

mean log power time series were computed for segments time-locked to each stimulus onset, 

averaging over trials and frequency bins. 

3.2.4 Statistical analysis 

To investigate the modulation of anticipatory alpha oscillations during the stimulus train, mean 

prestimulus alpha power was extracted from [-50 -200] ms time windows before each stimulus onset 

from S2 to S6. This window was chosen to minimize the influence of both the previous and the next 

evoked response, focusing on induced modulations. The main effects of category (attend word vs. 

attend face), distractor (absent vs. present) and their interaction were first assessed over the whole 

scalp using cluster-based permutation tests (cluster-forming threshold p=0.05, 999 permutations, 

adjacent stimulus windows and electrodes in less than 5 cm distance were considered neighbors, 

hypothesis tests were two-tailed) using functions implemented in FieldTrip [74, 75]. For the 

category × distractor interaction, there were no significant clusters (all p>0.1), therefore interaction 

effects between the main effects were not considered in further analyses. To assess anticipatory 

attentional modulations before S1 a similar permutation test for the category effect involving only 

the spatial dimension (spanning across recording channels) was performed on alpha power averaged 

on a longer pre-S1 time window ([-100 -600] ms before S1 onset). 
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To assess the hemispheric lateralization and temporal dynamics of the two main effects, separate 

follow-up ANOVAs (one for the category effect, one for the distractor effects) were conducted. In 

these analyses, the factor ‘sequence’ represented position in the stimulus sequence (time windows 

from pre-S2 to pre-S6), and ‘hemisphere’ was used to capture lateralization effects. The interactions 

of these two factors with the current main effect of interest (category or distractor) were also 

assessed, but not the main effects themselves, as they were already quantified in the whole-scalp 

statistics stage. The electrode pools of interest for this analysis were defined using the whole-scalp 

results of the two main effects in the following way. First, electrodes where significant differences 

were consistently present across the whole temporal extent of the cluster (S2-6 for the category 

effect, S2-4 for the distractor effect, see Results) were selected. Second, symmetric hemispheric 

electrode pools were formed, assuring that the pair of each electrode is included in the contralateral 

pool. (For example, on PO3 the category effect was always sub-threshold, but it was added to the 

left pool for the category effect as a pair of PO4.) Alpha power averaged within these pools for all 

the 5 pre-stimulus time windows during the sequence provided the input of the two follow-up 

ANOVAs. The rationale behind this analysis logic and its validity is detailed in the Methods section 

of the Introduction chapter (Section 2.4) 

Task performance was evaluated by comparing accuracies (percentage of correct responses) in all 

four conditions in a repeated measures ANOVA with factors ’category’ and ’distractor’. 

Post-hoc comparisons were conducted using Tukey’s Honestly Significant Differences procedure. 

The Huynh-Feldt correction for violation of sphericity was applied where necessary (indicated by 

εH-F; for the F-tests, uncorrected degrees of freedom are reported). 

3.2.5 Eye tracking data acquisition and analysis 

Eye movements were recorded using IView X Hi-Speed (SensoMotoric Instruments) at a sampling 

rate of 240 Hz. Data was cleaned of blinks and detrended, then segmented as described in the ERP 

processing section. To assess fixation stability, the root mean square deviation from the fixation dot 

across trials was calculated for each time point and then averaged within each [-200 100] ms 

peristimulus interval for each condition. Then, these RMS fixation stability values were compared 

in a repeated measures ANOVA with factors ’category’, ’distractor’ and ’sequence’. 
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3.3 Results 

3.3.1 Behavior  

 

Figure 3.2 Behavioral results. Accuracies in the 4 conditions. Gray circles are individual subjects, 

crosses and error bars mark condition mean (see also text labels) and SEM, respectively. 

The behavioral results (see also Fig. 3.2) showed that subjects' accuracy was similar in the attend-

face (76±2%, mean±SEM) and attend-word (77±2%) conditions (main effect of category: F(1, 

15)=0.11, p=0.74). The presence of distractors had a significant effect on performance both when 

faces and words were attended (distractor absent: 79±2%; distractor present: 74±3%; main effect of 

distractor: F(1,15)=20.43, p=0.00041; category × distractor interaction: F(1,15)=0.00005, p=0.99). 

These results imply that visual category related attentional effects in the EEG results cannot be 

accounted for by differences in attentional load or overall task difficulty between the conditions 

when faces and words were attended. 
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Figure 3.3. Grand average alpha power over the left (POL: O1 and PO3) and right (POR: O2 

and PO3) parieto-occipital cluster. The temporal evolution of alpha power in all four conditions 

is shown separately. Thin vertical lines are at the times of stimulus onsets (S1 to S6), shaded areas 

depict pre-stimulus time windows of interest where anticipatory activity was assessed. 

3.3.2 Electrophysiology 

The results revealed that anticipatory alpha activity measured on parieto-occipital electrodes was 

modulated depending on whether participants were cued to attend to faces or words, regardless of 

the presence of distractors (Figs. 3.3, 3.4, 3.5). Alpha power over the parieto-occipital cortex (see 

topography on Fig 3.4A) was significantly higher when words were attended than when faces were 

task-relevant (cluster-level p=0.02). Importantly, this object category based attentional modulation 

of alpha power showed a hemispheric lateralization: attending to words as compared to faces led to 

significantly larger increase in alpha activity over the right than the left hemisphere (category × 

hemisphere interaction F(1,15)=6.04; p=0.027). 
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Figure 3.4. The main effect of attention to object category on alpha power. T-values (A) and 

raw difference values (B) calculated as attend word minus attend face, averaging over distractor 

absent and distractor present. Positive values indicate larger alpha power to words than faces. Alpha 

power time series from the PO pools bilaterally for attend-word and attend-face, averaging over 

distractor conditions are displayed on (C) with time windows and stimulus onset marked the same 

way as on Fig. 3.3. | (A) Results of the cluster-based permutation test on the attentional modulation 

of anticipatory alpha activity in the prestimulus time windows (see shaded areas on panel C) before 

S2-S6. On the head plots, the color scale shows the results of the parametric t-test. The permutation 

test yielded a significant spatio-temporal cluster – electrodes that are in this cluster in a given pre-

stimulus window are marked on the respective head plots. The names of the two electrodes where 

the effect was consistently significant across time windows (O2 and PO4) are in bold. These and 

their contralateral pairs (O1 and PO3) were pooled and used in further analysis. (B) Means (bars) 

and 95% confidence intervals (error bars) of the attentional difference at the electrode pools selected 

for further analysis (POL: O1, PO3 and POR: O2, PO4) and two more lateral electrode pools (OTL: 

PO7, P7, PO9 and OTR: PO8, P8, PO10). Grey dots mark individual difference scores.  
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Figure 3.5. The distractor effect on alpha power. (A) Head plots for t-values of the distractor 

modulation (distractor present minus absent) of anticipatory alpha activity in prestimulus time 

windows before S2 to S6. As on Fig. 3.4, electrodes marked are in the cluster of significant 

difference yielded by the permutation test, and bold electrode names are the ones consistently 

present in the cluster throughout its temporal extent (pre-S2 to pre-S4), which are used in further 

analysis. ‘Left’ (L) and ‘Right’ (R) on this figure refer to pools of these electrodes from either 

hemisphere (Left: P7, PO7, PO9, PO3, O1, P1; Right: P8, PO8, PO10, PO4, O2, P2). Insets on the 

lower right side of each head plot depict means and 95% confidence intervals of the distractor-

related difference in the Left and Right pools; on the left of the figure, this is also shown for the pre-

S1 interval. (B) Temporal evolution of alpha activity in the presence and absence of distractors in 

the Left and Right pool selected from the distractor-effect cluster. 
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The presence of a distractor stimulus also influenced oscillatory power in the alpha band (distractor 

present > absent, cluster-level p=0.002, see Fig. 3.5), but this modulation was distinct from the 

category effect in several ways. First, no interaction was found between category and distractor 

(p>0.1 for all clusters). Second, the distractor effect had a more widespread topography, covering 

most of the posterior temporal, centro-parietal and occipital cortex (see Fig 3.5A). Third, the 

distractor effect, in contrast to the category effect, weakened and disappeared towards the end of 

the stimulus sequence (distractor × sequence interaction: F(4,60)=5.89, p=0.0028, εH-F=0.66; 

pTukey<0.0005 for the distractor effect in pre-S2 to pre-S4, pTukey>0.1 for pre-S5 and pre-S6). 

Alpha power started to grow after the pre-S2 period and levelled off around the time of S3-S4 in all 

conditions (the trend is visible on Figs. 3.3, 3.4 and 3.5; main effect of sequence: F(4,60)=8.17, 

p=0.001, εH-F=0.53 for the electrode pools defined by the distractor effect, F(4,60)=7.96, p=0.0022, 

εH-F=0.47 for the electrode pools defined by the category effect; pre-S2 differing from preS3-6 

pTukey<0.02, pTukey >0.5 for the remaining comparisons), which was due to the fact that alpha 

desynchronization after S1 was prominent but it gradually became weaker or completely 

disappeared in the case of subsequent stimuli. This modulation of the strength of alpha 

desynchronization was more pronounced over the right hemisphere (sequence × hemisphere 

interaction: F(4,60)=3.81, p=0.036, εH-F=0.48 in the distractor-effect electrode pools, F(4,60)=2.48, 

p=0.087, εH-F=0.61 for the category-effect electrode pools; pre-S3 vs. pre-S4-6 pTukey ≥ 0.1 over the 

left hemisphere, but pTukey<0.001 for pre-S3 vs pre-S4-5 over the right hemisphere). 

3.3.3 Fixation stability 

To assess fixation stability, we measured the subjects’ gaze position during the experiment. Most 

importantly, 77% of the recorded gaze position data was within a circle with a radius of 0.5° – 

subjects fixated properly at the stimulus. Mean deviation from the fixation dot was 0.35°, and did 

not differ across conditions or stimuli (for all effects, p > 0.05). 

  

DOI:10.15774/PPKE.ITK.2017.004



 
 

31 
 

3.4 Discussion 

Our results revealed that during sequential presentation of word and face stimuli, the power of 

parieto-occipital alpha oscillations increased when attending to words, as compared to when faces 

were attended. This effect was lateralized to the right hemisphere and persisted throughout the 

stimulus sequence over the parieto-occipital cortex. The presence of a distractor, as assessed by 

comparing the compound and single stimulus conditions, also modulated alpha oscillations, but did 

not interact with the object category-based attentional modulation and had distinct temporal and 

topographical characteristics. 

These results show that visual cortical alpha oscillations are invoked during object-based attentional 

selection: when words were attended, alpha power increased in the right hemisphere, which is 

specialized for the processing of task-irrelevant face stimuli [18]. Thus, these results suggest that 

object-based attentional suppression of task-irrelevant information might involve alpha-based 

inhibitory processes, analogously to that found in the case of spatial [53–55, 94, 95] and feature-

based attention [56]. Although one has to be cautious when interpreting topographic features of 

EEG results because of the limited spatial resolution of the method [68], it is notable that the 

topography of the attentional effect in this study, especially after S2, appears to be similar to spatial 

attentional modulations described in the literature [55, 94, 95]. This might suggest that the object-

based attentional modulation of alpha oscillations might originate from earlier visual areas instead 

of higher-level, object-selective areas of the ventral temporal cortex. This is in line with extensive 

previous evidence that object-based attentional effects propagate to early visual areas [98, 99, 104]. 

Furthermore, according to the biased competition theory, the strength of inhibition exerted by 

attention at a given level of the visual hierarchy should depend on the local degree of competition 

for representation between the stimuli [14]. In the case of spatially overlapping objects – like the 

stimuli in our study – competition is expected to be strong in retinotopically organized early visual 

cortex, which renders it a likely target of attentional inhibition. 

Furthermore, previous studies [105, 106] found that in macaques performing an attentional task, 

alpha activity in the inferior temporal cortex (IT) and early visual cortex have distinct functional 

and physiological properties. First, alpha activity in the macaque IT, as opposed to V2/V4, has a 

closed-field laminar source configuration, resulting in a weaker signal on the scalp [105]. Second, 

also in contrast to V2/V4, increased alpha power in the IT had facilitatory effects both on neural 

activity (multiunit activity and gamma power) and visual stimulus processing [105, 106]. They also 
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speculated that the laminar organization and information flow found in the IT might be well-suited 

for feedback to earlier visual areas [105]. According to these data, it is plausible to assume that the 

alpha-band effects found in this study indeed reflect top-down modulations in the early visual 

cortex. 

So, our results seem consistent with object-based attention operating early in the visual hierarchy, 

orchestrated by inhibitory feedback signals originating from higher-level, category-selective areas. 

The hemispheric asymmetry in the neural processing of words and faces in category-specific 

temporal areas [18, 107] also affects earlier visual areas, resulting in an inherent category-specific 

visuo-spatial bias [the right and left visual field advantage for words and faces, respectively; see 

108–110] that can possibly be strengthened according to attentional demands. Following this logic, 

anticipatory alpha power over the left hemisphere might be expected to be larger when attending to 

faces, as the processing of distractor words in the left hemisphere ought to be inhibited at some level 

of the visual hierarchy. This analogous modulation would have provided stronger evidence for the 

hypotheses based on the lateralized processing of word and face stimuli, but our expectations were 

not met by the results in this respect. The fact that the most stable attentional effect was found to be 

close to the midline rather than on more temporal aspects of the scalp also makes it less certain that 

scalp-level laterality actually reflects lateralized source activity. Also, besides results confirming 

the lateralized processing of faces and words, several studies rather show bilateral activations, point 

to the dependence of lateralization on other factors, or do not explicitly test for lateralization at all. 

Thus, while the results provide some support for the lateralization-based interpretation, it is also 

important not to disregard these ambiguities and consider the facets of the findings that are not 

dependent on assumed hemispheric dominance patterns. For example, given that faces are known 

to be intrinsically salient, highly effective distractors that gravitate bottom-up attention [111, 112], 

they thus might require more top-down inhibition than words, which could manifest as stronger 

alpha activity. Faces also consist of more complex features and covered a larger area in our stimulus 

display than words – these could also contribute to the greater demands on inhibitory attentional 

mechanisms when faces needed to be ignored. 

Using stimulus sequences instead of single stimuli we could characterize the effect of sustained 

object-based attentional selection on anticipatory alpha oscillations. We found no modulation in 

anticipation of the first stimulus, possibly due to our stimuli being long enough to allow post-onset 

orienting, exerting no time pressure that would require deployment of attention prior to the first 

stimulus. After the onset of the stimulus train, the modulation appeared following the early evoked 
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components, during the alpha event-related desynchronization (ERD), and persisted throughout the 

whole trial. This result is compatible with an alpha modulation with similar temporal dynamics 

during sustained spatial attention to rapid serial visual presentation of letter sequences [55]. 

Interestingly, independently of this persistent attentional difference, alpha power gradually 

increased during the course of the trial – it started to increase after the ERD for S1, and the 

subsequent ERDs were smaller and smaller, leading to alpha power levelling off towards the end of 

the sequence. In terms of the inhibitory account of alpha oscillations [8, 12, 13] – interpreting the 

ERD as a release from tonic baseline inhibition [9, 50] – this means that less and less excitability is 

required for processing of stimuli that arrive after others, perhaps up to a certain limit corresponding 

to the plateau that alpha power reaches during the trial. Interpreted in the predictive coding 

framework [28, 29], the cortical state established after the first stimulus enables more precise top-

down sensory predictions to arise, due to which only the most relevant neuronal subpopulations 

become activated for subsequent stimuli. Theories about the function of alpha oscillations exactly 

reflect this kind of inhibition: as alpha amplitude increases, the window of opportunity during which 

excitatory inputs are effective becomes smaller and smaller, allowing only the neurons with the 

most strong and most synchronous drive to be active [8]. 

Interestingly, the attend-word vs. attend-face difference was very similar when distractors were 

present and when distractors were absent. Although there was a non-significant trend of stronger 

modulation in the case when the unattended stimulus was also displayed, it appears that the 

deployment of attention to the attended stimulus is assured independently of the presence of a 

distractor, but the same process also leads to a potential distractor to be effectively filtered out. 

Distractors also affected alpha power, but (as the lack of interaction implies) this modulation was 

additive to the attentional effect, had broader and clearly distinct topography, and disappeared 

towards the end of the trial. Put differently, towards the end of the trial, alpha amplitudes converge 

(as the distractor effect disappears) to a level solely determined by the attended stimulus. Although 

we focused on the – traditionally more dominant – inhibitory facet of oscillatory attentional gating, 

this result puts the spotlight on the notion that alpha oscillations actively contribute to object 

representations by facilitating and temporally coordinating the activity of task-relevant neural 

subpopulations. In this respect, category-dependent alpha power can reflect some intrinsic 

parameter related to the processing of the stimulus, for example the optimal levels of 

excitation/inhibition balance which might depend on the attended stimulus. 
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To conclude, our results provide the first evidence that object-based attention modulates visual 

cortical alpha oscillations: attending to a word in a compound, foveally displayed word-face image 

boosted parieto-occipital alpha oscillations over the right hemisphere, consistent with attentional 

gating in early visual areas. 
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4 Cortical mechanisms of visual expertise 
in word recognition 

4.1 Introduction 

Reading requires the sophisticated coordination of different perceptual processes with cognitive and 

motor control. One basic component of reading is the brain's general capability of fast and effective 

recognition of common visual objects like faces, that through reading acquisition becomes adapted 

to recognizing printed words. Reading skills develop gradually from childhood to adolescence  and 

acquiring reading expertise has an overall effect on visual information processing [20, 113]. 

Previous research investigating word reading revealed that neural coding of letters and words is 

subserved by ventral occipito-temporal visual cortical regions [31, 32, 114], primarily the letter-

form and word-form areas, where letter-form and word-form selective neural responses emerge 

starting from around 150 ms and 220 ms after stimulus presentation, respectively [115]. 

Furthermore, it was also shown that selectivity of both functional magnetic resonance imaging 

(fMRI) responses in the visual word-form area [20, 113] and early event-related potential (ERP) 

components [116–118] to written letter and word stimuli increases in skilled readers as compared 

to beginners or individuals with reading deficits. 

Most previous studies aiming at uncovering the neural substrates of orthographic processing usually 

took the approach of comparing neural responses to words with those evoked by pseudowords or 

other objects [31, 32, 114, 115]. The drawback of this approach is that in the results obtained from 

the comparison of words and non-word stimuli, neural processes subserving skilled orthographic 

processing would be confounded by the visual cortical effects of overall differences in sensory-

cognitive processes and task demands. A possible alternative approach is to manipulate the second-

order configural relations [119] within written words by changing spatial distances among the 

letters. Altering inter-letter spacing is known to affect orthographic processing and reading speed. 

However, ultimately, after the visual processing stage (the length of which might vary), words in 

altered formats should trigger the same high-level, lexico-semantic processes as words in usual 

format [120–122]. Previous research on object vision has shown that perceptual expertise makes 

visual processing of the highly trained object category more sensitive to its configural information 

[119, 123–125] and that such expertise-related increase in sensitivity for configural properties was 
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reflected in the ERP component associated with object-selective visual cortical processing [126–

128]. In accordance with this, behavioral studies showed that skilled readers are tuned to the 

standard spacing [129] and increasing letter spacing to more than 1.5 times the normal spacing leads 

to reduced reading speed in skilled readers [121, 125, 130]. However, the same manipulation has 

no effect or even increases reading efficiency in children [131] and dyslexics [130], respectively. 

Based on this, we hypothesized that the visual components of orthographic processing might be 

revealed by contrasting EEG activity during reading words with normal letter spacing to that with 

altered spacing. 

Altering letter spacing is expected to affect both the early parallel extraction of letters and 

computation of bigrams as well as the later stage of word-form processing, and thus could allow us 

to investigate the neural signatures of these two prominent stages of orthographic processing. In 

particular, based on previous findings showing that object-selective visual cortical responses are 

enhanced to objects of expertise [20, 126, 127, 131–134], we predicted that when reading words 

with altered letter spacing, the neural responses associated with letter- and word-form-related 

processing will be diminished when compared to those for words with normal letter spacing. To test 

these assumptions in the current study we recorded EEG in human participants with typical reading 

skills, and contrasted EEG activity during reading words with normal letter spacing to that with 

increased and reduced spacing. We will refer to these results as expertise-driven configural effects, 

since they reflect those neural processes of visual information processing which become selective 

for normal letter spacing with expertise and will be disturbed independently of whether spacing is 

increased or decreased, i.e. when configural properties of the written text are modified. In addition, 

letter spacing also affects the reciprocal interference – crowding – among letters located in close 

proximity [120, 135]: overall visual perceptual processing load will be increased with enhanced 

crowding as a result of decreased letter spacing. Therefore, we identified the neural processes that 

are associated with the modulation of the overall visual processing load and dissociated them from 

those involved in expert orthographic processing. We will refer to these results as visual processing 

load effects. 

In the research project that this work is part of, we examined the neural correlates of visual expertise 

during conventional experimental conditions with controlled stimulus presentation and fixation, and 

also during natural reading [J2]. The latter, novel approach is important because natural reading is 

essentially an active sensory-motor process [136–138] where visual sampling of the orthographic 

information is subserved by consecutive saccadic eye movements, but only very few studies 
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attempted to characterize visual processing under natural viewing conditions, primarily due to the 

technical and analytical challenges posed by artefacts and the complex dynamics of the signal due 

to the self-imposed visual sampling [139–141]. The short description of the design and findings of 

the natural reading experiment can be found in Box 4.1. 

The present work focuses on results from the fixed-viewing experiment. First, it will be shown that 

visual expertise-related modulations induced by the letter spacing manipulation are mirrored in 

event-related potentials in a manner that is compatible with results observed during natural reading, 

co-validating the results obtained with the novel methodology. Second, the role of visual cortical 

alpha oscillations in orthographic expertise will also be investigated. This provides complementary 

information to fixed-view ERPs and fixation related potentials (also called fixation onset-related 

EEG activity or FOREA) results, as ERP is only sensitive to activity that is phase-locked to stimulus 

onset, and analytic methods for oscillatory activity during natural reading are still under 

development, for which these results can also provide important information. 

Alpha oscillations are well-known to reflect changes in neuronal excitability in early visual areas 

and visuospatial attentional modulations in occipito-parietal cortex [59, 105, 106, 142]. Spatial 

attentional mechanisms are known to be important in resolving the challenge posed to the visual 

system by stimuli with altered configuration [39], and measuring alpha desynchronization as an 

index of visual cortical processing intensity can also inform us about the increased processing 

demands of words with modified configural properties. More recently, alpha-beta oscillations have 

also emerged as an important carrier of top-down object knowledge information in the visual 

hierarchy. Building on this, we hypothesized that parieto-occipital alpha power will be larger for 

words presented in the usual format as compared to either decreased-spacing and increased-spacing 

formats, i.e., we will find an expertise-driven configural effect as defined above. Besides this, we 

expect visual processing load to affect earlier visual alpha responses (potentially including evoked 

effects) around the occipital pole. 
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Box 4.1 – The natural reading experiment 

In the paper entitled ’Visual processing during natural reading’ [J2], we studied how early 

EEG responses were influenced by letter spacing in a traditional, fixed-viewing experiment and 

also during natural reading. The methods of the two experiments were conceived so that the 

results would be as comparable as possible. In the dissertation, results from the fixed-viewing 

experiment are presented, and their relation to the natural viewing results will also be discussed. 

Here, I shortly describe the natural reading experiment (for all the details, see [J2]) to aid the 

understanding of these connections. 

In the natural reading experiment, 24 undergraduate students (11 female) read – with freely 

moving eyes – 32 short text excerpts presented line-by-line, centered horizontally on the screen. 

Switching to the next line was controlled by the participant by button press. Each line was 

presented with one of the 3 spacing conditions (minimal, normal, double), in random order. 

After each paragraph a single sentence test statement was presented and participants had to 

report with a mouse button press whether it was true or false. Other stimulation parameters, 

recording instrumentation and settings were the same as in the fixed-viewing experiment, except 

for more frequent recalibration of the eye tracker. 

Eye tracking data recorded during the whole experiment was analyzed to compare eye 

movement parameters across conditions. For EEG analysis, 1 s long artefact-free eye tracking 

data segments were selected. In these segments, saccades and fixations were detected using an 

adaptive algorithm, and these data were used in a novel ICA-based procedure for eye-movement 

artifact elimination from the concurrent EEG segments. Based on the detected fixation onsets, 

fixation-triggered segments („trials”) were extracted from the artefact free, SCD-transformed 

data. These segments were used in a single-trial hierarchical linear model that aimed at detecting 

expertise-driven configural (EDC) and visual processing load (VPL) effects while controlling 

for potential eye movement-related confounding variables. 

Expertise-driven configural effects were present in fixation onset-related activity (FOREA) 

in three consecutive time windows (120–175 ms, 230–265 ms, 345–380 ms after fixation onset, 

see Fig 4.2B) and the magnitude of FOREA effects in the two later time intervals showed a 
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close association with the participants’ reading speed: FOREA effects were larger in fast than 

in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable 

from the FOREA signatures of visual perceptual processes engaged to handle the increased 

crowding (155–220 ms) as a result of decreasing letter spacing: these were reflected in right 

hemisphere lateralized occipito-temporal and parietal increase of EEG activity between 155–

220 ms after fixation onset. 

Thus, the results revealed that orthographic processing during natural reading involves 

sequential stages of information processing with remarkably similar temporal dynamics to those 

proposed by models of visual word processing with fixed gaze. 
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4.2 Methods 

4.2.1 Participants 

Nineteen healthy right-handed young adults participated in this study. Two of them had insufficient 

number of artefact-free data segments and accordingly only 17 subjects (11 female; mean±SD age: 

24±2.10 years) entered statistical analysis. All of them were native speakers of Hungarian, reported 

having typical reading skills and had normal or corrected-to-normal vision. None of them had any 

history of neurological or psychiatric diseases. The experiment was approved by the local ethics 

committee of the Department of Cognitive Science, Budapest University of Technology and all 

methods were carried out in accordance with the approved guidelines. Participants gave informed 

consent before the beginning of the measurements. 

4.2.2 Visual stimuli and experimental procedure 

The stimuli were 4 and 5 letter Hungarian nouns from two semantic categories (living and non-

living), presented centrally on a 26” liquid-crystal display using a monospace font (Courier New). 

Random flanker words were also presented on both sides of the central word, to mimic the visual 

context during natural reading. Three different levels of letter spacing were used (Fig. 3.1): minimal 

spacing (MS; 0.707 times the normal spacing); normal spacing (NS; the distance between 

consecutive characters is 1.16 times the width of the lowercase x); double spacing (DS; 2 times the 

NS). Normal words subtended approximately 2° in the horizontal dimension. A small blue fixation 

dot was always present in the center of the screen. The background was white. The subjects were 

seated in a dimly lit room, their head was supported by a chin rest in a distance of 56 cm from the 

screen. The experiments were conducted in 6 runs, each lasting cca. 8 minutes, with some minutes 

of rest in between. Within runs, letter spacing of the words was constant. Condition order was 

counterbalanced across subjects. In half of the trials, words were presented without flanking words 

– these trials are not included in this study. 
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Figure 4.1. Sample stimuli with double (top), normal (middle) and minimal (bottom) letter 

spacing. In each trial, one stimulus line was displayed for 800 ms. The words at the position marked 

with the blue arrow are the target, the category of which (living/non-living) had to be indicated with 

button press after stimulus offset. The words on the left and right are irrelevant flankers. 

In each trial, a word was presented for 800 milliseconds. Subjects were told to respond after stimulus 

offset with a mouse button press, indicating which category the word (living or non-living) they had 

seen belonged to. The response interval was maximized in 2 seconds. The length of the inter-trial- 

interval (ITI, starting from the time of the response or from the end of the response interval) was 

chosen from a uniform probability distribution between 1250 and 1750 milliseconds. After every 

third trial an additional 650 ms of pause was added with the fixation dot turning red, and the subjects 

were asked to try to blink only during this period. The frequency and length of these blink windows 

were sometimes adjusted to the given subject’s propensity to blink. Stimulus presentation and 

subject response registration was implemented in MATLAB R2008a (The MathWorks Inc., Natick, 

MA, USA) using PsychToolbox version 3 1–3. 

4.2.3 Recordings 

EEG was acquired using 62 electrodes (Brain Products actiCAP; amplifier: BrainAmp Standard; 

Brain Products GmbH, Munich, Germany) mounted on an elastic cap according to the 10-10 system. 

Electrooculogram (EOG) activity was monitored by 3 EEG channels and an additional electrode 

that was placed below the right eye. The sampling rate was 500 Hz. Eye movements were recorded 

from participants’ left eye using iView X™ Hi-Speed 1250 system (SensoMotoric Instruments 

GmbH, Teltow, Germany) at a sampling rate of 1250 Hz. 
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4.2.4 Data analysis 

Pre-processing of the EEG signal was done in Brain Vision Analyzer (Brain Products GmbH, 

Munich, Germany). The signal was band-pass filtered (Butterworth zero-phase filter, 0.5-35 Hz, 12 

dB/octave) and segmented, with 500 ms preceding and 1200 ms following stimulus onset. Segments 

containing artefacts were marked using amplitude ([-50 50] µV for EOG, [-80 80] µV for EEG 

channels), amplitude difference (80 µV for EOG, 120 µV for EEG channels) and voltage step 

thresholds (10 µV per sample) and by visual inspection; these segments were not used in further 

analyses. Data were imported to MATLAB, and surface Laplacian approximations of the scalp 

current density were calculated using the CSD Toolbox [71, 72] (unit sphere radius, m=4, λ=10-5, 

the maximum degree of Legendre polynomials was set to 10).  

Analysis of Event-Related Potentials (ERPs) was aimed at testing for effects found in a natural 

reading experiment (see Box 4.1 and [J2]). Based on group-level results of the natural reading 

experiment and visual inspection of across-condition aggregated grand average waveform features 

[80], time ranges of [155 185] ms and [210 270] ms and channels PO9 and PO10 were selected for 

analysis. First, artefact-free segments were baseline-corrected ([-200 0] ms) and averages for 

conditions of interest were computed for each subject. EEG amplitudes within the time intervals of 

interest were averaged and analyzed using repeated measures ANOVA with Tukey’s HSD post hoc 

testing. A two-way ANOVA (factors: spacing with levels MS, NS and DS; electrode with levels 

PO9 and PO10) was conducted separately for both time windows. Statistical analysis was carried 

out in STATISTICA (StatSoft Inc., Tulsa, OK, USA). For consistency with the analysis of 

oscillatory data, planned contrasts for expertise-dependent configural (EDC) and visual processing 

load (VPL) effects (see below) were tested as well. 

Analysis of oscillatory responses to words was aimed at testing for expertise-dependent configural 

(EDC) and visual processing load (VPL) effects on parieto-occipital alpha power during and 

following the event-related desynchronization (ERD). For this purpose, single trials were convolved 

with complex Morlet wavelets at frequencies ranging from 8 to 14 Hz in steps of 1 Hz (MATLAB 

Wavelet Toolbox, cwt function v1.18.4.9, ‘cmor’ wavelet, Fc=1, Fb=1). From the complex output 

(c), mean power values (ps,i) across trials of each subject and condition (s,i) were obtained and 

converted to decibel scale (ps,i=10∙log10(⟨c∙c*⟩s,i); where * denotes the complex conjugate and ⟨∙⟩s,i 

denotes average over trials of condition i for subject s). For statistical analysis, these values were 

averaged across frequencies (8 to 14 Hz) and electrode pools formed over left and right parieto-
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occipital scalp regions (POL: O1, PO3, PO7, P7, P5, P3; POR: O2, PO4, PO8, P8, P6, P4). Baseline 

power was averaged in the [-150 -400] window and across all conditions and subtracted from the 

data. To test for lateralization effects, a third derivation channel was formed from the difference of 

these two pools (POR-POL). To avoid edge artefacts from wavelet convolution, 200 ms from both 

ends of the time series was discarded. Statistical testing was performed on this three-channel data 

using the cluster-based permutation method [74] for controlling Type I error rate for multiple 

comparisons across time and space using the FieldTrip toolbox [75] and custom code. POR and POL 

were considered to be neighbors during the formation of clusters, while the lateralization channel 

was considered in isolation. (Note that similar results were obtained using no spatial neighborhood 

structure during clustering.)  

As described in the Introduction section, we were interested in two potential response patterns in 

the data. First, expertise-driven configural (EDC) effects would appear as the normal-spacing 

condition differing from both the minimal and double spacing conditions with the same sign, 

tracking neural processes that are sensitive to departing from the usual format in any direction.  

Second, visual processing load (VPL) effects reflect neural processes which become more active as 

spacing decreases/increases, that is, activity depends linearly on spacing. These hypothetical 

response patterns were transformed to contrast vectors; the null hypothesis that the mean of the 

linear combination defined by the contrast equals zero (testable with any appropriate one-sample 

test) is equivalent with the null hypothesis that the given pattern is absent on the group level. The 

contrast vector for EDC is [-0.5 1 -0.5]×[MS NS DS], and for VPL it is [-1 0 1]×[MS NS DS]. These 

contrasts tested on the lateralization channel (POR-POL) probe whether the effect is stronger on 

either hemisphere (EDC × hemisphere, VPL × hemisphere interactions). The statistic evaluated on 

each time sample for each channel was a one-sample t-test, clusters were formed with a two-tailed 

α=0.05 threshold (|t(16)|=2.12). The maximum sum cluster statistic was used, the number of 

permutations was 9999. As the positive and negative effects are compared against separate null 

distributions, the resulting p-values are multiplied by 2 (cfg.correcttail=’prob’ option in 

FieldTrip). 
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4.3 Results 

4.3.1 Event-related potentials 

The effects of letter spacing on event-related potentials were investigated bilaterally over the 

occipito-temporal cortex (on PO9 and PO10) in two time windows ([155 185] ms and [210 270] 

ms). The results are visualized on Figure 4.2A. In an early time window ranging from 155 ms to 

185 ms, we found a significant spacing × electrode interaction (F(2,32)=7.93, p=0.0016). As 

assessed using Tukey’s HSD post hoc tests, this interaction was mainly driven by amplitudes on 

PO9 in the double spacing condition being less negative than in the normal spacing condition 

(pTukey = 0.025), with no similar significant difference on PO10 (pTukey = 0.4). In keeping with this, 

N1 responses were left-lateralized in the normal (pTukey = 0.00014) and minimal spacing 

(pTukey = 0.00017) conditions, but not in the double-spacing condition (pTukey = 0.8). In terms of 

planned linear contrasts for EDC and VPL, a marginally significant EDC effect was found on 

channel PO9 (t(16)=-2.14, p=0.048), whereas EDC on PO10 and VPL on both electrodes were not 

significant (all p≥0.1). 

A stronger, significant effect was found in a later 210–270 ms interval: the analysis using a two-

way repeated measures ANOVA revealed a significant main effect for letter spacing 

(F(2, 32) = 9.29, p = 0.0006), while the main effect of electrode and the interaction between letter 

spacing and electrode were not significant (F(1, 16) = 3.77, p = 0.07; F(2, 32) = 1.37, p = 0.27, 

respectively). This is supported by the results of post hoc testing of letter spacing, showing a 

significantly higher EEG activity for the NS as compared to MS (pTukey = 0.0025) and DS conditions 

(pTukey = 0.0019). EEG activity of MS and DS conditions did not differ significantly (pTukey = 0.99). 

The planned contrast analysis also confirmed the presence of a strong EDC effect (t(19)=5.15, 

p=0.00001), while the VPL contrast was, again, non-significant (t(19)=-0.087, p=0.93). 
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4.3.2 Parieto-occipital alpha oscillations 

Expertise-driven configural effects of letter spacing on alpha oscillations was found bilaterally on 

parieto-occipital electrode pools: alpha power was greater for the usual format than either for 

reduced or increased letter spacing (EDC effect, pCluster=0.02; see Fig. 4.3). The effect appears 

slightly earlier over the right hemisphere. Although it is not trivial to find the point where alpha 

power starts to diverge before the difference becoming significant, the difference appears to onset 

around 250-300 ms and reaching the threshold at 440 ms, then it peaks around 690 ms (tpeak=4.26), 

and finally it falls below threshold at 900 ms. On the left parietal pool, it reaches a lower peak 

difference (tpeak=2.66 at 675 ms) and is more constrained in time (starting around 400 ms, significant 

cluster between 600 ms and 760 ms). Despite this apparent pattern of larger effect with an earlier 

onset over the right hemisphere, the EDC lateralization effect (i.e., EDC × hemisphere interaction) 

did not reach significance (tpeak=2 at 640 ms). 

From the VPL contrast, aimed to investigate neural processes that are sensitive to spacing as related 

to density of visual information and crowding in the stimulus, no significant clusters emerged. A 

late (non-significant, pCluster=0.1) VPL lateralization (VPL × hemisphere interaction) cluster was 

found starting around 700 ms lasting up to the end of the segment, driven mainly by smaller alpha 

power over the right parietal cortex for double compared to minimal spacing (visible on Figure 

4.3A, right). That is, left parietal alpha power in the MS and DS conditions is similar, and the EDC 

effect here clearly reflects the NS condition standing out with larger amplitude, while in the right 

parietal cortex the decreased amplitude in the DS condition might contribute to the expertise effect 

with larger weight in a late time window. 
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Figure 4.3. The effects of letter spacing on alpha oscillations.  

(A) Grand average time series of alpha (8-14 Hz) power on the left and right parieto-occipital 

electrode pools (POL: O1, PO3, PO7, P7, P5, P3; POR: O2, PO4, PO8, P8, P6, P4; see also marked 

channels on (b)) in the minimal (MS), normal (NS) and double spacing (DS) conditions. Observe 

that both NS and DS alpha power is lower than NS – the significant difference (p=0.02, cluster 

corrected) is marked by black stripes. (B) Grand mean of the expertise-driven configural (EDC) 

effect on alpha power averaged in five time windows. The EDC contrast is calculated as NS-

½(MS+DS), so positive (red) values indicate NS alpha power being larger MS and DS averaged. 

Channels of the POL and POR electrode pools are marked with black dots. 
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4.4 Discussion 

In this study, our main objective was to examine the neural correlates of expertise-driven configural 

processing in terms of early event-related potentials and cortical oscillations in the alpha frequency 

band. Participants categorized simple Hungarian printed words with irrelevant flanking words 

around them to mimic the visual context of natural reading, and we manipulated the between-letter 

spacing. As between-letter spacing is known to be an important configural property of printed words 

that expert visual processing is adapted to, we reasoned that neural processes that are tuned to 

efficient processing of words with usual spacing would be affected similarly by both decreased and 

increased spacing (expertise-driven configural effects), as opposed to neural responses modulated 

simply by the density of visual information (visual processing load effects, captured by comparing 

the smallest to the largest spacing). We have found a left lateralized expertise effect in the time 

range of the N1 ERP component, followed by a robust, bilateral expertise effect in a later time 

window between 210 and 270 ms. Both results are in agreement with corresponding effects we 

found for fixation-related EEG responses in our experiments during natural reading (see [J2], Figure 

4.2B, Box 4.1), and fit well within current models of orthographic visual processing. Importantly, 

these data corroborate our natural viewing results, and also further validate the letter spacing 

manipulation as a versatile tool to investigate expert orthographic processing. 

Moreover, we provide the first evidence that the adaptation of the visual system to the format of 

printed text is reflected in the dynamics of post-stimulus visual cortical alpha oscillations. In 

particular, words in unusual format led to a larger and longer lasting event-related alpha 

desynchronization, which also led to stronger alpha activity for the normal format as compared to 

decreased or increased letter spacing in the later phase of the visual cortical alpha response. These 

results, probably reflecting induced modulations, complement the ERP results, and provide 

important insight into the neural underpinnings of visual expertise in orthographic processing. 

Models of visual word recognition propose hierarchically organized stages of orthographic 

processing enabling the extraction of increasingly invariant and complex representations of written 

words [114, 138, 143]. At the low-level orthographic processing stage within the first 200 ms after 

stimulus onset, letter identity representations are computed, which according to previous EEG 

studies using masked priming [144–148] are already size-invariant, but still position-sensitive, case-

sensitive, and font-sensitive. This is followed by the computation of a more complex orthographic 

code, involving feature-invariant, abstract letter and word-form representations, taking place in the 
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200-300 ms time window [115, 144–146, 148]. In agreement with the scheme of visual word 

processing outlined above, neuroimaging studies [31, 32] showed that word recognition is subserved 

by the left fusiform gyrus, where orthographic representations are organized in a posterior-to-

anterior hierarchy. Letter selective responses were revealed in a posterior part of the fusiform gyrus, 

a region called visual letter-form area [115]. Word-form selective responses were found in an 

adjacent, more anterior region of the fusiform gyrus, in the visual word form area [31, 32], which 

computes a structural representation of the visual word as an ordered sequence of abstract letter 

identities. Furthermore, a recent study [115] using magnetoencephalography (MEG) and 

intracranial recordings of local field potentials also provided direct support for the proposed 

dynamics of orthographic processing by showing that letter processing (identified by contrasting 

consonant strings vs. false fonts) occurs starting from ∼160 ms after stimulus onset, whereas word 

processing (identified by contrasting real words versus consonant strings) occurs starting from ∼225 

ms. 

Our ERP analysis confirmed that, similarly to during natural reading, visual expertise is reflected in 

early visual cortical responses obtained under conventional, controlled experimental conditions. We 

found that over the left hemisphere, the N1 response is smaller in the case of irregular formats, i.e. 

both for increased and decreased spacing. The N1 component is thought to reflect the first pass of 

category-specific processing of visual objects, which can be facilitated by visual expertise as 

evidenced by increased N1 amplitudes. The visual word-evoked N1, also called N150, is linked to 

sublexical, position-specific letter-level orthographic processing [143, 148, 149], as outlined above. 

This N1 expertise effect could be related to a similar early visual expertise modulation we also 

observed during natural reading. The left-lateralization of this response is also in agreement the 

general finding that the neural systems specialized for the visual processing of words are left-

lateralized [31, 113], in connection with the left-lateralized semantic and language systems in the 

anterior temporal and frontal cortices. A stronger, bilateral expertise ERP effect was found in the 

time window of the N2/P2 components, between 210 and 270 ms. This time range is linked to the 

phase when the sublexical orthographic representations are integrated at the whole-word level, 

which precedes and provides information for the subsequent stages starting at around 300 ms post-

stimulus onset when word identification and semantic access occurs [115, 143, 148]. This possibly 

corresponds to the mid-latency expertise effect we found during natural reading. In accordance with 

the notion that the formation of abstract whole-word representations is a prerequisite for semantic 

access, this effect was found to be a strong predictor of reading speed in our natural reading 

experiment. Thus, altering letter spacing seems to hinder both the parallel extraction of position-
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specific letter identity information as well as the subsequent computation of abstract letter 

combinations, such as bigrams, but in terms of both effect size and behavioral relevance, the 

influence of visual expertise appears to be stronger in the latter phase. This is in accordance with 

results from the face processing literature that found effects of second-order configural 

manipulations in the P2 but not in the N1 time range [150], while the N1 appears to be more sensitive 

to first-order configuration and a ‘holistic’ mode of expert processing that is argued to be less 

essential mechanism for expertise in the case of words as compared to faces [151, 152], or might 

occur at a later stage, as the earliest signs of integration across letter representations usually arises 

around 200 ms [115, 148]. 

Two additional effects were found during natural reading that did not show up in the fixed-viewing 

experiment: an additional expertise effect that predicted reading speed similarly to the N2/P2 effect 

emerged in the 345-380 ms time window, and a visual processing load effect appeared between 

155-220 ms. In the present work, where words were flashed during controlled fixation, we did not 

find any corresponding pattern of results. This might be due to different signal-to-noise and 

sensitivity profiles of the methodologies of the two experimental paradigms, but, more importantly, 

the natural reading experiment was intended exactly to capture the neural processes subserving the 

active sampling of visual information that might be concealed by the artefactual boundary 

conditions imposed on participants during conventional, fixed-view experiments. Also, during 

natural reading, participants read real text, which required them to form fine-grained semantic 

representations and integrate them into context, which is exactly the process that is thought to take 

place in the time window of the late expertise effect [143, 148]. In contrast, the fixed-viewing 

experiment only required a simple binary categorization of the presented words (living vs non-

living), which possibly could become relatively automatic and didn’t require deep semantic 

processing. Therefore, late semantic components are possibly diminished in the fixed-viewing 

study, while during natural viewing, the increased processing demands could have cascaded into 

the regime of semantic access and integration, leading to the significant late expertise effect. 

Despite these discrepancies, however, the notable correspondence found between the early effects 

corroborate the validity of both the letter spacing manipulation to tap into expert configural 

processing of orthographic stimuli, and the experimental and analytic methodology to investigate 

these processes under natural reading conditions. As a next step, we aimed at characterizing 

oscillatory expertise effects, focusing on the alpha frequency band. Investigating this under fixed 

viewing conditions complements the event- and fixation-related potential results, which only reflect 
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modulations that are phase-locked to stimulus/fixation onset, and can also inform analyses of 

oscillatory modulations during natural viewing. 

Our results clearly show that the visual cortical alpha response is sensitive to configural information 

in printed words, as indexed by a significant expertise-driven configural effect over bilateral 

occipito-parietal areas. In particular, the event-related desynchronization response was found to be 

longer lasting and more deep (i.e., alpha power was lower) for both altered formats as compared to 

normally spaced words. Although we could not establish that the effect was significantly lateralized, 

it was more prominent over the right hemisphere. As the scalp current density metric is most 

sensitive to activity directly below the channel where it is measured [68, 71, 72], the topographic 

distribution of the effect is compatible with sources in the more occipital aspect of the visual cortex 

on the right, and lateral, possibly ventral temporal areas in the left hemisphere. This is compatible 

with the known localization of the different levels of the word processing circuitry in the visual 

cortex [31, 153]. The lateral occipital cortex [154] could also be considered in the case of the right 

hemisphere, which has been implicated in ‘on-demand’ reentrant processing during noisy face 

perception [40, 41]. 

Despite the fact that in statistical terms, the effect was strongest in a late time window around 600-

700 ms, we argue that it is best interpreted in terms of differential visual processing demands. Alpha 

ERD is often interpreted as disinhibition [50], which is also supported by some neurophysiological 

evidence [59]. Although the generality of this interpretation is debated [11, 105, 106], currently it 

appears to hold for sensory and attentional processing in occipito-parietal visual areas [10, 155]. 

The right occipito-parietal ERD for normal and altered-spacing words was similar up to ~270 ms, 

whereupon alpha power reached a short negative plateau for the normal condition, but continued to 

slowly decrease in the altered conditions. The time window of the divergence corresponds to the 

stage when sublexical orthographic representations are integrated to whole-word representations 

[143, 148], and we suggest that the continued decrease of alpha power for altered-format words 

reflects that the default processes of expert orthographic processing should be augmented by 

additional neural resources when faced with nonstandard input. This is also in accordance with 

MEG [156] and intracranial [157] studies finding that the integration of letters into a whole-word 

percept that is accessible to consciousness depends on a late occipito-parietal alpha 

desynchronization.  
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Alternatively, it can be conceived that the additional resources required for reading configurally 

altered text are attentional mechanisms in the dorsal visual stream that can set new sampling 

strategies to select the features of the object, which in turn provide the input to configural object 

processing mechanisms. In a previous study that used words with random vertical letter 

displacement and MEG with source imaging, Pammer and colleagues [158] also found alpha 

modulations in the right posterior parietal cortex, and fMRI findings also show that several kinds of 

word stimulus degradation, including letter spacing, reliably recruit parietal areas [39]. It should be 

noted, however, that unlike the letter spacing and displacement manipulations used in these studies, 

we show that either increasing or decreasing letter spacing produces similar results, which further 

confirm that our results do not arise from general visual perceptual load imposed by increased visual 

information density, but probably reflect the adaptation of the visual system to the habitual format 

that is subject to visual expertise. It is also interesting to speculate that while considering visual 

word processing, the N2 component, as also discussed above, is linked to the formation of word-

form representations, in the attentional literature the posterior N2 is a prominent correlate of 

attentional selection [159, 160]. While its most well-known manifestation is lateralized and linked 

to spatial selection, Loughnane and colleagues [161] have shown that it is generalizable to 

nonspatial attentional selection that marks the onset and provides input for subsequent stages of 

perceptual evidence accumulation. Thus, the strong expertise-driven effect in the N2 time window, 

again, points to the potential role of the dorsal visual areas in selecting relevant features for object 

processing mechanisms in the ventral stream, especially when expertise-driven processes fail on 

non-habitual input. 

Thus, we argue that the critical perceptual evidence accumulation phase between 200 and 300 ms, 

leading to the integrated percept of a word, requires more neural resources and gets prolonged for 

altered-format words, as reflected in the lengthened initial alpha desynchronization over visual 

areas, and potentially also the N2 ERP modulation. Our experimental design does not permit to 

characterize how the next, semantic retrieval stage might be affected by this delay, and the alpha 

power difference that even increases beyond just being carried over to this next phase. This question 

should be addressed in future experiments, it is nevertheless interesting to speculate on what the 

present results might imply. Low frequency (alpha and beta) oscillations have also been implicated 

in forming networks that can coordinate neural activity related to expectation [162, 163], perceptual 

[164] or working memory representations [165], and also in providing the main channel of high-

level object information through feedback connections in the visual cortical hierarchy [65, 67]. So, 

possibly normal format processing can better exploit prior, ‘predictive’ knowledge about the 
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structure of the visual stimulus, which can be reflected in the higher alpha power for normally 

spaced words in the rebound phase of the alpha response.  

To sum up, we found that visual expertise for orthography was reflected in the N1 and P2/N2 ERP 

components, in agreement with our results from natural reading, and also modulated the occipito-

parietal event-related alpha response. In line with what we expected, the ERP and oscillatory results 

provide complementary evidence for our hypothesis that processing text with altered letter spacing 

requires alternate computational strategies, more neural resources more time, most prominently at 

the stage where letter-level representations are integrated into whole-word level abstract 

representations. Considering results from both fixed-viewing and natural-viewing paradigms 

provides both complementary and confirmatory information, enabling better research in the future 

by mutually informing experimental design, analysis and interpretation of the results as well. 
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5 Conclusions and future directions 

The main aim of this dissertation is to show how alpha oscillations contribute to the visual 

processing of complex natural objects in the human cortex. EEG alpha oscillations have been known 

for almost a century [2, 47], and the intensive research focusing on them both in the field of 

cognitive neuroscience and neurophysiology is continuously converging toward making them one 

of the first noninvasively measurable EEG markers that can provide information on circuit-level 

neurobiological processes [60, 65, 67, 166]. 

Importantly, the stimuli used in the experiments were complex everyday visual objects. Especially 

in the attention experiment, artificial, controlled stimuli could have allowed for asking more 

specialized questions, but, due to the role of experience and expertise in the perception of natural 

objects, it is quite difficult to engage the highest levels of visual processing without using everyday 

stimuli. Therefore, we decided to use words and faces. Both stimuli have a well-characterized visual 

cortical circuitry specialized in their processing in all neurotypical and literate humans [18, 31, 32, 

41]. 

In the first part, I showed that alpha oscillations, in accordance with their role already established 

in the case of spatial [53, 55, 57] and feature-based [56] attention, also contribute to object-based 

attention. Words and faces were presented foveally, overlapping each other, which precludes the 

use of coarse spatial selection mechanisms. Also, six consecutive stimuli were presented, which 

allowed us to investigate how the existing attentional set modulates alpha oscillations in anticipation 

of more upcoming stimuli. Alpha oscillations with a right hemispheric occipital focus were stronger 

when words were attended and more desynchronized when faces were attended, and we observed 

no interaction with whether the other, irrelevant category stimulus was present or not. This 

modulation was sustained throughout the whole stimulus stream, whereas the presence of distractors 

only modulated alpha power at the first part of the stimulus sequence, with a broader topography. 

In the second part, I characterized cortical processes underlying visual expertise for printed words 

in terms of alpha oscillations, and also event-related potentials. As the experiment was part of a 

research agenda aiming at characterizing the same processes during natural reading, I also had the 

opportunity to consider the results in this context. Both experiments used a novel manipulation, 

using words with normal, increased and decreased letter spacing. This manipulation was devised so 
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that it would tap into basic visual processes, while leaving the overall legibility and content of the 

word stimuli relatively unaffected. First, I showed that the neural correlates of visual expertise in 

early cortical responses observed during natural reading are manifested in the fixed-view results as 

well. After pondering on the similarities and discrepancies, I went on to show that the visual cortical 

alpha response to word stimuli is also sensitive to expertise for print. Particularly, the 

desynchronization phase was deeper and more prolonged for altered-format stimuli, and this 

difference was carried over into and even strengthened in the late phase of stimulus processing. 

These findings – early evoked modulations in fixed-view word recognition and natural reading, 

augmented by oscillatory modulations presented here – provide converging evidence that the 

processing phase that visual expertise for print most profoundly influences is that of integrating 

sublexical representations into abstract whole-word units. Reading words in altered format requires 

more processing in this phase, which probably also contributes to delay in semantic access and 

slowing of reading to a considerable degree, as seen in the natural reading data. 

In both experiments, the topography of the effects – object attention and object expertise – were 

nicely constrained to visual areas, assumably mainly from the ventral stream of the visual system. 

In object-based attention, while the attentional effect was present over a broader part of the cortex 

in the beginning, the effect remained most stable on electrodes over the early visual cortex. We 

interpreted this as object-based attentional effects propagating backwards in the visual stream, 

leading to attentional filtering at the earliest stages. The expertise effect was analyzed using a ROI-

based approach, however, observing the topography also implies sources in the ventral visual 

stream, potentially including the letter-form, word-form areas and earlier, less specific visual areas 

involved in representing letter features. 

Thus, taken together, the results of the two experiments suggest that alpha oscillations in visual 

cortex play a role during object selection in cluttered environments, and they might also mediate 

efficient, expert object recognition in the case of printed words. It is clear that further research would 

be needed to establish what could be the common and disparate neurophysiological network 

mechanisms behind the alpha-band modulations during attentional selection and expertise in the 

case of complex, natural objects like words and faces. It is tempting, however, to consider the results 

in a common framework, as permitted by recent integrative models trying to capture the variability 

and versatility of attention both in the lab and “in the wild”. These models, instead of dealing with 

attention as a separate phenomenon, also attempt to integrate it in broader theories of brain function. 
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The recent work of Buschman an Kastner [167] attempts to integrate several theories that are 

relevant to discuss the present results, therefore I will use their five-step model of attention to 

elaborate how the present results could fit in current theories. A central tenet of their model is to 

explain how broad top-down attentional modulations can give rise to the huge variety of specific 

and sharp local attentional effects through local interactions in sensory areas. They posit that the 

pattern-completion nature of the sensory cortex is a key component to achieve this. As detailed in 

the introduction, the visual system has evolved and developed to represent the environment in a cost 

efficient way, so it discards any input that is orthogonal to its representational dictionary, while 

signals that match the representations get boosted. These embedded object representations provide 

the essence to form the hierarchical network structure of the visual system. They propose that broad 

top-down influences can act backwards through the same circuitry, allowing the detailed 

representations that get activated by bottom-up drive to crystallize in a way that is in accordance 

with current attentional demands. (This occurs early, in Stage 2 of their model, following the initial 

deployment of attention in Stage 1.) This is captured well, for example, in findings that as soon as 

one part of an object is selected, attention spreads to the whole object [168]. This is in accordance 

with the role of alpha oscillations as both reflecting attentional modulations and activity in the 

feedback circuitry of the visual system that is crucial in the formation of high-level object 

representations. 

Besides the circuits of embedded object representation, Buschman and Kastner [167] (besides, e.g., 

[21, 22]) also regard normalization as a key local interaction that captures the competition between 

stimulus representations, and argue that attention can bias competition through modulating these 

interactions (during the 3rd Stage). They argue that lateral inhibition through inhibitory neural 

populations of the sensory cortex might be the primary mechanism through which this can occur. 

They mainly emphasize the potential role of higher-frequency oscillations in this and the following 

4th stage, arguing for the role of rhythmic inhibition and synchrony in organizing population activity 

during attention. However, there are some implications for the potential role of alpha oscillations in 

normalization-like phenomena. There is evidence that alpha oscillations in V1 are related to local 

cortical interactions mediating surround suppression [169, 170]. Also, on the higher level, the 

antagonistic patterning of alpha ERS/ERD during intersensory and within-modality attention ([50, 

56] ,see Introduction) makes it a potential candidate for a mechanism mediating global 

normalization throughout the brain.  
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The 5th stage of the model concerns the dynamic, rhythmic nature of attention and explores possible 

connections with lower-frequency oscillations (besides alpha, also involving the theta and beta 

range). These connections are currently subject to intensive research, and it appears that rhythmicity 

could be a previously neglected but essential characteristic of attention. A central finding is that 

attention samples stimuli in a rhythmic fashion. For example, some behavioral [171, 172] and EEG 

[173] studies found that within-object sampling occurs around 8-10 Hz, i.e. at the lower edge of the 

alpha band, while between-object switching is dominated by lower rhythms in the theta band. This 

could be related to the role of alpha oscillations in object-based attention and expert object 

perception that is the subject of this work. However, another study found that during visual search 

in macaques, attention sampled stimuli at a rate in the beta frequency range [174]. Also, validly 

establishing these connections is very challenging in the methodological sense, which make some 

earlier results in the literature questionable [175]. So, it is clear that still a lot of theoretical and 

experimental work is needed to reconcile apparent contradictions and fit rhythmic sampling into our 

current understanding of attention, and discussing these in the context of the present results is 

beyond the scope of this work. 

To sum up, trying to interpret these results in a common framework gives rise to the hypothesis that 

object-based selection processes both exploit and serve the hierarchical neural system underlying 

efficient visual object processing, and visual cortical alpha oscillations provide the primary neural 

communication channel that makes this possible. That is, as described above, visual objects can be 

selected from cluttered visual scenes by exploiting the high-level knowledge engrained in the 

ventral visual stream about the structure of these objects (and also how they usually appear in their 

environment, see ) – this is how visual attention “exploits” the properties of the visual system. But 

also, perceiving and judging a visual object quickly and effectively also involves selection-like 

processes (which sometimes appear as complex filter kernels in computational models,) during 

which the diagnostic parts of the objects are processed more intensively based on contextual and 

“gist” information from a fast feedforward first processing stage. 

 A possible good way forward is to test this hypothesis more explicitly and investigate how alpha 

oscillations contribute to this two facets of visual object processing. This question is also intimately 

related to how attention and object perception can work so effectively in natural scenes. It would be 

also intriguing to investigate how the N2pc family of attentional ERP components might be related 

to neural correlates of detailed object processing in the same latency range (n250r for face 

individuation, or P2/N2 modulations related to format alteration or noise filtering) – could the latter 
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be understood as a second-pass selection process aimed at sampling lower-level visual areas for 

more detailed object information? 

An interesting result that warrants further investigation is how in the first experiment alpha power 

converged according to the attended category towards the end of the trial, independent of whether 

the other category was present. Although the task-dependence of alpha power is more frequently 

emphasized than its stimulus-dependence (e.g., [10]), this might suggest that this “steady state” 

level of alpha power reflects visual processing requirement that is inherent to the given category. 

That is, to my knowledge, what visual parameters stimulus-related alpha responses are sensitive to 

is an important basic question that has not been investigated before. For example, computational 

models (e.g., [176–178]) could yield parameters that I would expect to be related to properties of 

the alpha response. Alternatively, behavioral markers of visual information load [179] could also 

be related to alpha responses. 

The results on reading have important implications on dyslexia research. It is known that dyslexics 

are more affected by crowding (they improve if letter spacing is increased [131]), and the neural 

correlates of this sensitivity could be investigated with similar methods and compared to typical 

readers. It is possible, for example, that the visual processing load effect (that corresponds to 

crowding) would be stronger in dyslexics. Besides a larger visual load effect, the expertise effect 

could be delayed and either smaller – reflecting the impairment itself in this case – or larger – then 

it would correspond to a compensatory mechanism. 

To conclude, I have shown that visual cortical alpha oscillations are modulated during object-based 

attention and also reflect visual expertise for orthography. These effects have not yet been tested on 

real-world scenes in natural viewing scenarios, but the results strongly support the prediction that 

they would also hold in those conditions: for the orthographic expertise effect, it was found that the 

ERP results are comparable to those acquired during natural reading, and for the object-based 

attention effect, the experimental design included temporal context and spatial clutter that could be 

expected in natural viewing. I explored the possibility that the two results on cortical alpha activity 

might reflect similar neural circuit mechanisms in the visual hierarchy, and put forward a few 

questions that could be tested experimentally. What the disparate and common underlying 

neurophysiological patterns might be is not yet clear, but it is certain that alpha oscillations are 

manifested in multiple facets of object perception.  
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6 Summary of the Theses 

6.1 Thesis I. 

I provide the first evidence that object-based attentional selection – similarly to spatial 

and feature-based attention – involves visual cortical alpha oscillations. 

Published in [J1]. 

Throughout the last two decades, converging evidence from scalp [53, 54, 95, 142] and invasive 

electrophysiology [59], concurrent imaging methods [180] and neurostimulation [181] has 

suggested that visual cortical alpha oscillations are involved in attentional gating of the incoming 

visual information [182]. It is well established that spatial attentional selection results in increased 

alpha oscillations over the cortical regions representing sensory input originating from the 

unattended visual field, with concomitant decreases for areas representing relevant parts of the 

visual field [53]. More recently a similar mechanism was demonstrated for feature-based attention 

[13]. However, whether attentional gating in the case of object-based selection is also associated 

with alpha oscillations has not been investigated before. 

 Here, we measured electroencephalography (EEG) while participants performed an object-based 

attentional selection task. In each trial, participants were cued to focus attention to sequences of six 

word and face stimuli, which were foveally presented. The presence of the irrelevant category 

stimulus was orthogonally manipulated – in half of trials, only the relevant category image was 

present, in the other half, word stimuli overlaid on faces were displayed. After each sequence of 6 

consecutively presented stimuli participants had to indicate how many times (0, 1 or 2) two 

consecutive stimuli from the same type occurred (faces: male/female, words: fruit/animal). 

Accuracy on this task was similar for words (77%) and faces (76%), but was reduced by distractors 

(from 79% to 74%). 
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Thesis I/1 – I have shown that object-based attention to foveally presented words versus faces 

increased right-lateralized anticipatory alpha oscillations over the visual cortex. I have also 

shown that this effect is remarkably persistent throughout a sequence of stimuli. 

The results revealed that anticipatory alpha activity (8-12 Hz) measured on parieto-occipital 

electrodes was significantly higher when participants were cued to attend to words (Figure 3.3 ,3.4), 

as compared to when faces were task-relevant. Importantly, this object category based attentional 

modulation of alpha power showed a hemispheric lateralization: attending to words as compared to 

faces led to significantly larger increase in alpha activity over the right than the left hemisphere. 

The object category-dependent attentional effect on anticipatory alpha activity did not arise before 

the first stimulus in the sequence, possibly due to our stimuli being long enough to allow post-onset 

orienting, exerting no time pressure that would require deployment of attention prior to the first 

stimulus. Before the second stimulus, it had a broader topography extending to right temporal 

electrodes, but afterwards it was confined to the right parieto-occipital region, where it did not 

weaken throughout the whole stimulus sequence. 

Thesis I/2 – I have shown that the object-based attentional effect on right parieto-occipital alpha 

oscillations does not interact with the presence of a strong, overlapping distractor stimulus 

from the other category. I have also characterized the influence of distractors on visual cortical 

alpha oscillations, which lacks the temporal persistence and focused topography of the 

attentional effect, providing further support for their dissociation. 

When stimuli from the unattended category (distractors) were also present at the same foveal 

location as the attended stimuli, the event-related alpha desynchronization responses were less 

pronounced, leading to higher alpha power with than without distractors (Figure 3.5). However, this 

influence of distractors on alpha oscillations was clearly distinct from the category effect in several 

ways. First, no statistical interaction was found between the two effects. Second, the distractor effect 

had a more widespread topography, covering most of the posterior temporal, centro-parietal and 

occipital cortex (see Figure 3.5A). Third, the distractor effect, in contrast to the attentional effect, 

weakened and almost disappeared towards the end of the stimulus sequence.  

Possibly related to this, it was also found that alpha power displayed a saturation pattern during the 

trial in all conditions, as alpha desynchronization after S1 was prominent but it gradually became 

weaker or completely disappeared in the case of subsequent stimuli (see e.g. Fig. 3.3). This 

modulation of the strength of alpha desynchronization was more pronounced over the right 
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hemisphere. As alpha power is frequently regarded as an index of cortical excitability [183], this 

could mean that less and less resources were spent on irrelevant stimuli, but it is also possible that 

the relevant stimuli were processed more efficiently, requiring less resources. 

6.2 Thesis II. 

I have shown that visual expertise for written words is reflected in early visual cortical 

evoked and alpha-band oscillatory responses as probed by a novel paradigm using words 

with altered letter spacing. 

Published in [J2]. 

In most previous research studying visual word recognition compared neural responses to words 

with those evoked by pseudowords or other objects [31, 114]. Focusing on visual processing, 

however, it is a better approach to use subtle manipulations affecting mainly the visual properties 

of text while leaving its content and overall “legibility” relatively unaffected. With this in mind, we 

introduced a novel paradigm to study visual processing underlying reading and word recognition: 

by using words with normal, decreased and increased letter spacing (Figure 4.1) we can probe and 

dissociate a) visual expertise in word processing by comparing responses for normal and altered 

spacing regardless of increase or decrease; b) more general visual processing load effects arising 

from changes in the density of visual information and competitive interactions that depend on the 

distance between similar visual elements (crowding).  

This thesis focuses on results from a traditional experiment with controlled stimulation and fixation, 

but within the context of results from the natural reading experiment (detailed in [J2]) that was also 

part of this project. The latter, novel approach can reveal neural processes subserving active 

sampling of visual information that might remain obscured in conventional experiments, but 

uncontrolled visual stimulation and ensuing artefacts also impose inherent limitations and technical 

challenges to solve.  
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Thesis II/1 – I have shown that visual expertise for orthography, as measured by altering letter 

spacing, is reflected in two early visual cortical evoked response components between 150 and 

300 ms after stimulus onset, indicating that visual expertise pervades letter-level sublexical to 

whole-word level prelexical orthographic visual processing in the cortex. 

As between-letter spacing is known to be an important configural property of printed words that 

expert visual processing is adapted to, we reasoned that neural processes that are tuned to efficient 

processing of words with usual spacing would be affected similarly by both decreased and increased 

spacing (expertise-driven configural effects), as opposed to neural responses modulated simply by 

the density of visual information (as captured by comparing the smallest to the largest spacing, 

visual processing load effects). We have found a left lateralized expertise effect in the time range of 

the N1 ERP component, followed by a robust, bilateral expertise effect in a later time window of 

the P2/N2 components, between 210 and 270 ms (Figure 4b). The left N1 component can be 

regarded as an index of orthographic processing at the level of single letters [148, 149], while the 

N2 time range is associated with the integration of these units into abstract, pre-lexical whole-word 

visual representations [115, 148]. Our results thus indicate that both of these stages rely on 

expertise-driven configural visual processing mechanisms. 

Some minor differences between natural reading and fixed-view results were found (Figure 4.2); a 

late expertise and an early processing load effect obtained during natural reading did not appear in 

the fixed-viewing results. Importantly however, the correspondences that do hold corroborate our 

natural viewing results, and also the letter spacing manipulation as a versatile tool to investigate 

expert orthographic processing. 

Thesis II/2 – I have shown that the event-related alpha response is sensitive to the configural 

properties of written words. This provides an index of visual expertise in word recognition that 

is complementary to the ERP results. 

Our results clearly show that the visual cortical alpha response is sensitive to configural information 

in printed words, as indexed by a significant expertise-driven configural effect over bilateral 

occipito-parietal areas (Figure 4.3B). In particular, the event-related desynchronization (ERD) 

response was found to be longer lasting and more deep (i.e., alpha power was lower) for both altered 

formats as compared to normally spaced words (Figure 4.3A). Although we could not establish that 

the effect was significantly lateralized, it was more prominent over the right hemisphere. 
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Despite the fact that in statistical terms, the effect was strongest in a late time window around 600-

700 ms, we argue that it is best interpreted in terms of differential visual processing demands. The 

right occipito-parietal ERD for normal and altered-spacing words was similar up to ~270 ms, 

whereupon alpha power reached a short negative plateau for the normal condition, but continued to 

slowly decrease in the altered conditions. The time window of the divergence corresponds to the 

stage when sublexical orthographic representations are integrated to whole-word representations 

[115, 148], and we suggest that the continued decrease of alpha power for altered-format words 

reflects that the default processes of expert orthographic processing should be augmented by 

additional neural resources when faced with nonstandard input. 
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